Nav: Home

New findings linking abnormalities in circadian rhythms to neurochemical to changes in specific neurotransmitters

May 31, 2016

Belmont, MA--Results of the first study of its kind to link abnormalities in circadian rhythms to changes in specific neurotransmitters in people with bipolar disorder will be published this week in the journal Biological Psychiatry.

The three-year study conducted by McLean researchers points to specific neuroanatomical changes in human subjects with these illnesses, and specifically to neurons that regulate anxiety and stress response, according to Harry Pantazopoulos, PhD, assistant neuroscientist at McLean's Translational Neuroscience Laboratory and instructor in psychiatry at Harvard Medical School.

"For more than 50 years, there's been evidence that there's something wrong with circadian rhythms in people with bipolar disorder, but there has been a huge gap in terms of what we understand about their brains and how altered circadian rhythms are contributing to their symptoms," noted Pantazopoulos, lead author of the study.

"Growing evidence points to a key role for somatostatin, a neurotransmitter in schizophrenia and bipolar disorder," he said. "In the amygdala, a part of the brain involved in anxiety and stress, somatostatin plays an important role in the regulation of anxiety and depression, often co-occurring in these disorders."

The paper provides three main, previously unreported findings:
  • Somatostatin immunoreactive neurons are decreased in the amygdala in schizophrenia and in bipolar disorder.

  • The expression of somatostatin in the human amygdala displays a healthy circadian rhythm of expression.

  • This circadian somatostatin expression is altered in subjects with bipolar disorder.

This altered circadian function of somatostatin in subjects with bipolar disorder consists of a sharp decrease in somatostatin expression by neurons in the early morning, in comparison to a rise in the same neurons during this time interval in healthy control subjects, according to Pantazopoulos.

"We eventually saw that people with bipolar disorder have a very strong decrease of this protein in the beginning of the day while people without a psychiatric disorder normally have an increase in this protein," he said. "The decrease of the protein correlates very strongly with the established severity of depression and anxiety symptoms in people with mood disorders, in the morning. Therefore, our findings point to potential neural correlates of circadian rhythm abnormalities associated with specific symptoms in bipolar disorder."

The study was conducted using postmortem brains from the Harvard Brain Tissue Resource Center, in which 15 brains were used from healthy controls, 15 with bipolar disorder, and 12 with schizophrenia.

"Brain imaging technology doesn't have the resolution at the moment to allow us to examine these neurons in the brain in people with bipolar disorder because the changes are in very specific neurocircuits that we can't visualize very well," said Pantazopoulos. "With post mortem brain studies, we are able to look at changes microscopically."

While the study validates what many researchers have long suspected, Pantazopoulos is cautious about drawing conclusions. "We're only scratching the surface of learning what the rhythmic expression of these proteins does biologically and how this goes awry in psychiatric disorders. We have a long way to go, as this is just one brain region and one specific protein."

Pantazopoulos recently launched a new study that looks at neurotransmitters as well as the clock genes within the suprachiasmatic nucleus of people with bipolar disorder and those without psychotic disorders--to characterize how the proteins' rhythm of expression change.

"From studies on animals, we know we can treat the circadian rhythm of the suprachiasmatic nucleus non-pharmacologically by using light therapy. We could potentially correct the abnormalities in circadian rhythms in some areas, such as the amygdala--by resetting the circadian rhythm with bright light therapy," said Pantazopoulos. "The goal is to not only understand the pathology of these disorders, but to develop new diagnostic methods and treatments down the line, possibly patient-specific bright light therapy."
-end-
McLean Hospital is the largest psychiatric affiliate of Harvard Medical School and a member of Partners HealthCare. For more information about McLean, visit mcleanhospital.org or follow the hospital on Facebook or Twitter.

McLean Hospital

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
Neurons that fire together, don't always wire together
As the adage goes 'neurons that fire together, wire together,' but a new paper published today in Neuron demonstrates that, in addition to response similarity, projection target also constrains local connectivity.
Scientists accidentally reprogram mature mouse GABA neurons into dopaminergic-like neurons
Attempting to make dopamine-producing neurons out of glial cells in mouse brains, a group of researchers instead converted mature inhibitory neurons into dopaminergic cells.
More Neurons News and Neurons Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.