Nav: Home

Leaving the electrical grid in the Upper Peninsula

May 31, 2016

Known for snow rather than sun, Michigan's Upper Peninsula could still support a significant network of solar photovoltaic (PV) energy systems. Solar energy alone in the region is seasonally restricted. However, solar coupled with cogeneration and batteries could overcome any cloudy, cold winter day.

Michigan Tech engineers and sociologists explored what this new technology, and the role of demographics, could mean for energy alternatives in the Upper Peninsula in a new study published in Energy Policy. Their analysis found that by 2020, leaving the electrical grid is a viable economic option for the majority of seasonal households (92 percent) as well as single-family owner-occupied households (65 percent).

Cogeneration systems are small-scale combined heat and power (CHP) systems, which usually run on natural gas and produce heat as they generate electricity. They can function year-round and are most effective in the winter when solar production is low. Along with improved battery storage, these hybrid systems would not require being tied into the electrical grid. The costs of CHP systems are coming down and are projected to keep decreasing.

"The costs of centralized energy distribution, on the other hand, are going to be higher than they are today," says Joshua Pearce, an associate professor of electrical and computer engineering as well as materials science and engineering at Michigan Tech. He co-authored the study looking at the economics behind solar-hybrid systems.

"With these new technologies," Pearce says, "you can put the CHP in your basement, the battery bank in your garage, and solar on your roof--this could actually work for regular people."

Richelle Winkler, an associate professor of sociology and demography at Michigan Tech, led the demographic analysis. She used utility data on electric rates, data from the 2010 census and income estimates from the American Community Survey. In general, utility rates across the Upper Peninsula vary between average to some of the highest in the nation. Winkler also looked at the number and size of households in each utility service area in the Upper Peninsula along with how many homes are seasonal and year-round residences.

Together, the data enabled the team to make several estimates. First, they calculated the electricity demand by household size and type. Second, they compared costs of conventional grid electricity to an off-grid solar-hybrid system. Finally, they assessed how many households could afford to invest in a solar-hybrid system.

"It is the people living with the highest rates for whom it is economically viable to get off the grid very soon," Winkler says. "The study shows that even here in the Upper Peninsula, where solar is not as productive as other regions and with a high proportion of relatively low income people, it is starting to be economically viable to get off the grid using a solar-hybrid system."

To Pearce, the Upper Peninsula is an extreme example of potential grid defection, but represents a challenge for utilities across the country trying to figure out how to incorporate distributed energy production. Besides the potential for CHP on a home-scale, there are also neighborhood, community and municipal models being proposed.

"For everyone else in America, the Upper Peninsula's situation indicates that distributed energy is in play and it's up to the utilities," Pearce says, explaining that if utilities prevent grid-tied solar with rate manipulation, then customers could simply leave the grid. "Solar hybrid systems are a very different way to operate--it's literally giving power to the people."
-end-


Michigan Technological University

Related Solar Energy Articles:

Air pollution casts shadow over solar energy production
Global solar energy production is taking a major hit due to air pollution and dust.
Freshwater from salt water using only solar energy
A federally funded research effort to revolutionize water treatment has yielded a direct solar desalination technology that uses energy from sunlight alone to heat salt water for membrane distillation.
New technology will enable properties to share solar energy
New technology will enable properties to share solar energy and will mean low energy bills for consumers.
Solar paint offers endless energy from water vapor
Researchers in Melbourne, Australia, have developed a compound that draws moisture from the air and splits it into oxygen and hydrogen.
Solar cell design with over 50 percent energy-conversion efficiency
Solar cells convert the sun's energy into electricity by converting photons into electrons.
Bio-inspired energy storage: A new light for solar power
Inspired by the western Swordfern, a groundbreaking prototype could be the answer to the storage challenge still holding solar back as a total energy solution.
The economic case for wind and solar energy in Africa
To meet skyrocketing demand for electricity, African countries may have to triple their energy output by 2030.
The beating heart of solar energy
Using solar cells placed under the skin to continuously recharge implanted electronic medical devices is a viable one.
How plants manage excess solar energy
Life on earth largely depends on the conversion of light energy into chemical energy through photosynthesis by plants.
New maps show where to generate solar energy in South Carolina
Amanda Farthing and the team at Clemson University created maps showing which lands in South Carolina would be most suitable for generating solar energy at utility scale.

Related Solar Energy Reading:

Solar Energy: The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems
by Olindo Isabella (Author), Klaus Jäger (Author), Arno Smets (Author), René van Swaaij (Author), Miro Zeman (Author)

Solar Power Demystified: The Beginners Guide To Solar Power, Energy Independence And Lower Bills
by Digital Publishing Ltd

Taming the Sun: Innovations to Harness Solar Energy and Power the Planet (The MIT Press)
by Varun Sivaram (Author)

Install Your Own Solar Panels: Designing and Installing a Photovoltaic System to Power Your Home
by Joseph Burdick (Author), Philip Schmidt (Author)

Solar Electricity Handbook - 2018 Edition: A Simple, Practical Guide to Solar Energy - Designing and Installing Solar Photovoltaic Systems.
by Michael Boxwell (Author)

Mobile Solar Power Made Easy!: Mobile 12 volt off grid solar system design and installation. RV's, Vans, Cars and boats! Do-it-yourself step by step instructions.
by William Errol Prowse IV (Author)

Photovoltaics: Design and Installation Manual
by Solar Energy International (Author)

DIY Solar Power: How To Power Everything From The Sun
by Micah Toll (Author)

The Year-Round Solar Greenhouse: How to Design and Build a Net-Zero Energy Greenhouse
by New Society Publishers

Photovoltaic Design and Installation For Dummies
by Ryan Mayfield (Author)

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".