Nav: Home

Improving cell transplantation after spinal cord injury: When, where and how?

May 31, 2016

Spinal cord injuries are mostly caused by trauma, often incurred in road traffic or sporting incidents, often with devastating and irreversible consequences, and unfortunately having a relatively high prevalence (250,000 patients in the USA; 80% of cases are male). One currently explored approach to restoring function after spinal cord injury is the transplantation of olfactory ensheathing cells (OECs) into the damaged area. The hope is that these will encourage the repair of damaged neurons, but does it work? And if so, how can it be optimized?

According to a systematic analysis of the literature published this week in PLOS Biology, after experimental spinal cord injury, transplanting OECs into the site of damage does indeed significantly improve locomotor performance. To reach this conclusion, Ralf Watzlawick, Jan Schwab, and their colleagues at the Ohio State University Wexner Medical Center, Charité Universtaetsmedizin Berlin and the CAMARADES consortium (Collaborative Approach to Meta Analysis and Review of Animal Data from Experimental Studies), analyzed 49 studies, published between 1949 and 2014, which included 62 experiments involving 1164 animals.

Restoration of function after spinal cord injury remains one of the most formidable challenges in regenerative medicine, but cell transplantation into the spinal cord represents a promising treatment strategy. OECs are considered particularly suitable for transplantation because they have been shown to be neuro-protective and to promote neuro-regeneration in different settings, and can be extracted from the patient's own nasal cavity, thereby minimizing the chances of graft rejection and avoiding the need for immunosuppressive drugs.

However, reports in the literature about the efficacy of transplantation of OECs for treatment of spinal cord injury have been contradictory. Therefore, to investigate the in vivo evidence for the efficacy of this procedure, the authors implemented a systematic review and meta-analysis of the literature. Importantly, the authors set out to explore the potential influence of variations in experimental approaches and unreported data.

"We felt that after more than two decades since the discovery that OECs elicit effects on neural plasticity in vivo, it was time to test their effects by appropriate methodology beyond reproduction", the authors argued.

The data analysed by the authors justify the use of OECs as a cellular substrate to develop and to optimize minimally invasive and secure protocols for repairing damaged spinal cord. They also identified several aspects of the cell transplantation procedure that could have a significant impact on the size of the therapeutic effect, including: the time-point of application, the use of surgical micro-dissection to "refresh" the scar tissue, the localization of transplanted cells, the number of injections, the injected volume, and the dose of cells administered.

Importantly, by using state-of-the-art statistical methods the authors also found that the impact of publication bias (due to selective failure to report results) was minimal, further supporting the translational potential of this approach.

Despite being focussing on OECs, the findings may be of more general relevance for optimizing the transplantation of other cell types after spinal cord injury.

-end-

Additional information:

The Collaborative Approach to Meta Analysis and Review of Animal Data from Experimental Studies.

http://www.dcn.ed.ac.uk/camarades/

In your coverage please use this URL to provide access to the freely available article in PLOS Biology: http://dx.plos.org/10.1371/journal.pbio.1002468

Citation: Watzlawick R, Rind J, Sena ES, Brommer B, Zhang T, Kopp MA, et al. (2016) Olfactory Ensheathing Cell Transplantation in Experimental Spinal Cord Injury: Effect size and Reporting Bias of 62 Experimental Treatments: A Systematic Review and Meta-Analysis. PLoS Biol 14(5): e1002468. doi:10.1371/journal.pbio.1002468

Funding: RW was sponsored by the "Studienstiftung des deutschen Volkes" (#186392). JMS received funding support from the Else-Kroehner-Fresenius Foundation, the Wings-for-Life Spinal Cord Research Foundation (#60-2012), and the W.E. Hunt & C.M. Curtis Endowment. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

PLOS
Spinal cord injury patients face many serious health problems besides paralysis
Spinal cord patients are at higher risk for cardiovascular disease; pneumonia; life-threatening blood clots; bladder, bowel and sexual dysfunction; constipation and other gastrointestinal problems; pressure ulcers; and chronic pain, according to a report published in the journal Current Neurology and Neuroscience Reports.
A review on the therapeutic antibodies for spinal cord injury
Spinal cord injury (SCI) causes long-lasting damage in the spinal cord that leads to paraparesis, paraplegia, quadriplegia and other lifetime disabilities.
Health behaviors and management critical for spinal cord injury patients
U-M researcher is the co-editor of a two-part series of Topics in Spinal Cord Injury Rehabilitation focused on recent research studies about health behaviors and health management in individuals with spinal cord injury.
First clinical guidelines in Canada for pain following spinal cord injury
Researchers at Lawson Health Research Institute are the first in Canada to develop clinical practice guidelines for managing neuropathic pain with patients who have experienced a spinal cord injury.
Improving cell transplantation after spinal cord injury: When, where and how?
Spinal cord injuries are mostly caused by trauma, often incurred in road traffic or sporting incidents, often with devastating and irreversible consequences.
Discovery in roundworms may one day help humans with spinal cord injury and paralysis
A newly discovered pathway leading to the regeneration of central nervous system (CNS) brain cells (neurons) in a type of roundworm (C. elegans) sheds light on the adult human nervous system's ability to regenerate.
Protective effect of genetically modified cord blood on spinal cord injury in rats
Researchers of Kazan Federal University genetically modified cord blood which managed to increase tissue sparing and numbers of regenerated axons, reduce glial scar formation and promote behavioral recovery when transplanted immediately after a rat contusion spinal cord injury.
Aging diminishes spinal cord regeneration after injury
Researchers at University of California, San Diego School of Medicine and University of British Columbia (UBC) have determined that, in mice, age diminishes ability to regenerate axons, the brain's communication wires in the spinal cord.
Neuroscientific evidence that motivation promotes recovery after spinal cord injury
The research team led by Associate Professor Yukio Nishimura, National Institute for Physiological Sciences, Natural Institutes of Natural Sciences, found that the nucleus accumbens, that control motivation in the brain, activates the activity of the motor cortex of the brain, and then promotes recovery of motor function during the early stage of recovery after spinal cord injury.
New approach to spinal cord and brain injury research
Many an injury will heal, but the damaged spinal cord is notoriously recalcitrant.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.

Now Playing: Radiolab

Truth Trolls
Today, a third story of folks relentlessly searching for the truth. But this time, the truth seekers are an unlikely bunch... internet trolls.


Now Playing: TED Radio Hour

Rethinking School
For most of modern history, humans have placed smaller humans in institutions called schools. But what parts of this model still work? And what must change? This hour, TED speakers rethink education.TED speakers include teacher Tyler DeWitt, social entrepreneur Sal Khan, international education expert Andreas Schleicher, and educator Linda Cliatt-Wayman.