Nav: Home

Tobacco smoke makes germs more resilient

May 31, 2016

LOUISVILLE, Ky. - The mouth is one of the "dirtiest" parts of the body, home to millions of germs. But puffing cigarettes can increase the likelihood that certain bacteria like Porphyromonas gingivalis will not only set up camp but will build a fortified city in the mouth and fight against the immune system.

University of Louisville School of Dentistry researcher David A. Scott, Ph.D., explores how cigarettes lead to colonization of bacteria in the body. Scott and his research team have identified how tobacco smoke, composed of thousands of chemical components, is an environmental stressor and promotes bacteria colonization and immune invasion.

Scott says since this initial finding several years ago, a recent literature review published in Tobacco Induced Diseases revealed that cigarette smoke and its components also promote biofilm formation by several other pathogens including Staphylococcus aureus, Streptococcus mutans, Klebsiella pneumonia and Pseudomonas aeruginosa.

Biofilms are composed of numerous microbial communities often made up of complex, interacting and co-existing multispecies structures. Bacteria can form biofilms on most surfaces including teeth, heart valves and the respiratory tract.

"Once a pathogen establishes itself within a biofilm, it can be difficult to eradicate as biofilms provide a physical barrier against the host immune response, can be impermeable to antibiotics and act as a reservoir for persistent infection," Scott said. "Furthermore, biofilms allow for the transfer of genetic material among the bacterial community and this can lead to antibiotic resistance and the propagation of other virulence factors that promote infection."

One of the most prevalent biofilms is dental plaque, which can lead to gingivitis - a gum disease found in almost half the world's population - and to more severe oral diseases, such as chronic periodontitis. Bacterial biofilms also can form on heart valves resulting in heart-related infections, and they also can cause a host of other problems.

"We are continuing research to understand the interactions of the elaborate communities within biofilms and how they relate to disease. Many studies have investigated biofilms using single species, but more relevant multispecies models are emerging. Novel treatments for biofilm-induced diseases also are being investigated, but we have a long way to go," Scott said.

Scott elaborates on this research in a short question and answer style blog published today on the BioMedCentral website.

Attention to Scott's work comes as the World Health Organization observes World No Tobacco Day on May 31 to encourage a global 24-hour abstinence from all forms of tobacco consumption. The effort points to the annual 6 million worldwide deaths linked to the negative health effects of tobacco use.

In the United States, Kentucky ranks second for cigarette use among adults, according the Centers for Disease Control and Prevention (CDC). Only West Virginia has more smokers. Kentucky also brings up the rear among youth in grades 9-12 who use tobacco; according to 2011 CDC data, about 24-percent of high school students smoke cigarettes.

-end-



University of Louisville
Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.

Now Playing: Radiolab

Truth Trolls
Today, a third story of folks relentlessly searching for the truth. But this time, the truth seekers are an unlikely bunch... internet trolls.


Now Playing: TED Radio Hour

Rethinking School
For most of modern history, humans have placed smaller humans in institutions called schools. But what parts of this model still work? And what must change? This hour, TED speakers rethink education.TED speakers include teacher Tyler DeWitt, social entrepreneur Sal Khan, international education expert Andreas Schleicher, and educator Linda Cliatt-Wayman.