Nav: Home

'Weak' materials offer strong possibilities for electronics

May 31, 2016

New fundamental research by UT Dallas physicists may accelerate the drive toward more advanced electronics and more powerful computers.

The scientists are investigating materials called topological insulators, whose surface electrical properties are essentially the opposite of the properties inside.

"These materials are made of the same thing throughout, from the interior to the exterior," said Dr. Fan Zhang, assistant professor of physics at UT Dallas. "But, the interior does not conduct electrons -- it's an insulator -- while the electrons on the surface are free to move around. The surface is therefore a conductor, like a metal, but it is in fact more robust than a metal."

There are two types of topological insulators: strong and weak. The difference between them is subtle and involves complex physics, but is critically important.

"If you had a cube of material that is a strong topological insulator, all six faces can conduct electrons," Zhang said. "For the weak one, only the four sides are conducting, while the top and bottom surfaces remain insulating."

Strong topological insulators were made experimentally shortly after they were theoretically proposed. Zhang said they are common in nature, and several dozen variations have been identified and experimentally confirmed.

On the other hand, weak topological insulators have been more elusive. Scientists have proposed various ways to construct a weak topological insulator, but because of its distinctive properties, researchers have not been able to say definitively that they have experimentally produced one.

Zhang, a theoretical physicist, has devised a new way to make a weak topological insulator, one that involves a relatively simple mix of two chemical elements: a crystal composed of bismuth combined with either iodine or bromine. He and his colleagues published the research recently in the journal Physical Review Letters and presented their work at the March meeting of the American Physical Society.

In the 1970s, German scientists grew bismuth iodides and bismuth bromides, but they didn't understand their potential as weak topological insulators, Zhang said.

"This class of materials we are proposing is a unique platform for exploring exotic physics with fairly simple chemistry," he said. "With further research and experimentation, our findings could lead to significant advances in technology, especially in electronics and quantum computing."

Electrically conductive materials are the fundamental building blocks of the traditional transistors that power electronic devices including cellphones and computers. Researchers are developing new theories and experiments with innovative physics and materials to create new transistor-like technologies that run devices and make computers more powerful.

With such exotic electrical properties, topological insulators offer a potential option, Zhang said.

"Our lives have been modified over time by our understanding of the conduction of electrons and the exploitation of this physics for use in electronic devices," he said. "We now need to revolutionize transistors. One possible substitution is a so-called topological field effect transistor, which could be made of a thin film of a weak topological insulator."

Computers also are heading for a fundamental redesign, and those efforts might be aided by Zhang's research.

"The fundamental computing scale is now very limited," he said. "For many applications, like weather forecasting and information encoding and decoding, today's computers are way too slow. However, quantum computers have been proposed that would use the principles of quantum physics to compute exponentially faster than today's computers.

"Weak topological insulators could make quantum computing feasible."

As a theorist, Zhang used old-fashioned pencil and paper to construct the basis of his theory about the bismuth compounds. His postdoctoral researcher Dr. Cheng-Cheng Liu, the study's lead author and now an assistant professor at Beijing Institute of Technology, then crunched specific numbers using high-speed supercomputers at the Texas Advanced Computing Center based at UT Austin.

Zhang's UT Dallas colleague, Dr. Bing Lv, assistant professor of physics, has made samples of bismuth iodide.

"The next step will be to characterize the material to explore the unique properties that a weak topological insulator can offer to fundamental physics and to our everyday lives," Zhang said.
In addition to Zhang and Liu, other authors of the study are Dr. Jin-Jian Zhou at California Institute of Technology and Yugui Yao at Beijing Institute of Technology.

The work at UT Dallas was primarily supported by University startup funds and the National Science Foundation through the Aspen Center for Physics and Kavli Institute for Theoretical Physics.

University of Texas at Dallas

Related Electrons Articles:

Deceleration of runaway electrons paves the way for fusion power
Fusion power has the potential to provide clean and safe energy that is free from carbon dioxide emissions.
Shining light on low-energy electrons
The classic method for studying how electrons interact with matter is by analyzing their scattering through thin layers of a known substance.
Ultrafast nanophotonics: Turmoil in sluggish electrons' existence
An international team of physicists has monitored the scattering behavior of electrons in a non-conducting material in real-time.
NASA mission uncovers a dance of electrons in space
NASA's MMS mission studies how electrons spiral and dive around the planet in a complex dance dictated by the magnetic and electric fields, and a new study revealed a bizarre new type of motion exhibited by these electrons.
'Hot' electrons don't mind the gap
Rice University scientists discover that 'hot' electrons can create a photovoltage about a thousand times larger than ordinary temperature differences in nanoscale gaps in gold wires.
Electrons used to control ultrashort laser pulses
We may soon get better insight into the microcosm and the world of electrons.
Supercool electrons
Study of electron movement on helium may impact the future of quantum computing.
Two electrons go on a quantum walk and end up in a qudit
There is a variety of physical systems that can be used to implement a separate quantum bit, but significantly less research has been done into systems of several qubits or qudits.
Radiation that knocks electrons out and down, one after another
Researchers at Japan's Tohoku University are investigating novel ways by which electrons are knocked out of matter.
Controlling electrons in time and space
A new method has been developed to control electrons being emitted from metal tips.

Related Electrons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...