Amid terror threats, new hope for radiation antidote

May 31, 2016

University of Virginia School of Medicine researchers have identified promising drugs that could lead to the first antidote for radiation exposure that might result from a dirty bomb terror attack or a nuclear accident such as Chernobyl.

Some of the compounds, including the drug rapamycin, have previously been shown to extend life in organisms such as worms and flies, though it's unknown if they would have the same benefit in humans. UVA's research suggests that these compounds, or similar drugs, might counter the deadly effects of ionizing radiation.

Currently there is no treatment for people exposed to lethal doses of radiation; doctors can only try to ease their suffering until death. "If you're exposed to a very, very high dose, it's rapid deterioration and immediate death," explained John S. Lazo, PhD, of UVA's Department of Pharmacology. "It's the lower doses that people - particularly governments - are concerned about. The type of exposure that might result from a dirty bomb or a nuclear accident. How do we alleviate the effects? What's the antidote? Right now, we just don't have anything."

Innovative Approach

Lazo and his colleague Elizabeth R. Sharlow, PhD, screened a library of more than 3,400 existing drugs, vitamins and other compounds to identify ones that might help cells withstand the effects of radiation exposure. The goal was to keep stem cells - the cells that produce the various cell types in the body - alive long enough to repair the damage caused by radiation.

"We wanted to find already approved drugs that would potentially keep stem cells, or progenitor cells, alive after radiation exposure," Sharlow said. "That's very much of interest to the NIH [National Institutes of Health] right now: How can we keep those self-renewing populations alive so they can actually help heal the effects of radiation exposure?"

After they identified potential leads, Sharlow created 3D computer models to compare the substances' chemical structures. That analysis identified a cluster of promising compounds with similar structures - a tantalizing lead in the quest for an antidote. "If you're a drug hunter, the way we are, this is really cool information," Lazo said. "Because you can say, 'Now I will look in the universe of 40 million compounds. What else looks like that? Are they useful?'"

He noted that it is unlikely any one drug or compound will work on its own. "A lot of us in this field think it will be a cocktail of things you take," he said. "And if you think you need cocktails, you need the individual ingredients. That's why we think this is pretty important - because it's providing new ingredients for that cocktail."
-end-
Findings Published

The findings have been published in the scientific journal ACS Chemical Biology. The article was written by Sharlow, Stephanie Leimgruber, Ana Lira, UVA faculty member Michael J. McConnell, UVA research scientist Andrés Norambuena, UVA faculty member George S. Bloom, Michael W. Epperly, Joel S. Greenberger and Lazo.

University of Virginia Health System

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.