Nav: Home

Amid terror threats, new hope for radiation antidote

May 31, 2016

  • UVA researchers have identified compounds that could lead to the first antidote for potentially deadly radiation exposure
  • Research was spurred by government concern about terror attacks and nuclear accidents
  • For people exposed to sufficient ionizing radiation, doctors can only try to ease their suffering until death
  • 2016 is the 30th anniversary of the Chernobyl nuclear accident and the fifth anniversary of the Fukushima nuclear accident

University of Virginia School of Medicine researchers have identified promising drugs that could lead to the first antidote for radiation exposure that might result from a dirty bomb terror attack or a nuclear accident such as Chernobyl.

Some of the compounds, including the drug rapamycin, have previously been shown to extend life in organisms such as worms and flies, though it's unknown if they would have the same benefit in humans. UVA's research suggests that these compounds, or similar drugs, might counter the deadly effects of ionizing radiation.

Currently there is no treatment for people exposed to lethal doses of radiation; doctors can only try to ease their suffering until death. "If you're exposed to a very, very high dose, it's rapid deterioration and immediate death," explained John S. Lazo, PhD, of UVA's Department of Pharmacology. "It's the lower doses that people - particularly governments - are concerned about. The type of exposure that might result from a dirty bomb or a nuclear accident. How do we alleviate the effects? What's the antidote? Right now, we just don't have anything."

Innovative Approach

Lazo and his colleague Elizabeth R. Sharlow, PhD, screened a library of more than 3,400 existing drugs, vitamins and other compounds to identify ones that might help cells withstand the effects of radiation exposure. The goal was to keep stem cells - the cells that produce the various cell types in the body - alive long enough to repair the damage caused by radiation.

"We wanted to find already approved drugs that would potentially keep stem cells, or progenitor cells, alive after radiation exposure," Sharlow said. "That's very much of interest to the NIH [National Institutes of Health] right now: How can we keep those self-renewing populations alive so they can actually help heal the effects of radiation exposure?"

After they identified potential leads, Sharlow created 3D computer models to compare the substances' chemical structures. That analysis identified a cluster of promising compounds with similar structures - a tantalizing lead in the quest for an antidote. "If you're a drug hunter, the way we are, this is really cool information," Lazo said. "Because you can say, 'Now I will look in the universe of 40 million compounds. What else looks like that? Are they useful?'"

He noted that it is unlikely any one drug or compound will work on its own. "A lot of us in this field think it will be a cocktail of things you take," he said. "And if you think you need cocktails, you need the individual ingredients. That's why we think this is pretty important - because it's providing new ingredients for that cocktail."
-end-
Findings Published

The findings have been published in the scientific journal ACS Chemical Biology. The article was written by Sharlow, Stephanie Leimgruber, Ana Lira, UVA faculty member Michael J. McConnell, UVA research scientist Andrés Norambuena, UVA faculty member George S. Bloom, Michael W. Epperly, Joel S. Greenberger and Lazo.

University of Virginia Health System

Related Stem Cells Articles:

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.
TSRI researchers identify gene responsible for mesenchymal stem cells' stem-ness'
Researchers at The Scripps Research Institute recently published a study in the journal Cell Death and Differentiation identifying factors crucial to mesenchymal stem cell differentiation, providing insight into how these cells should be studied for clinical purposes.
Stem cells in intestinal lining may shed light on behavior of cancer cells
The lining of the intestines -- the epithelium -- does more than absorb nutrients from your lunch.
More Stem Cells News and Stem Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.