Nav: Home

Looking at complex light wave forms

May 31, 2017

For the first time an international research team under the direction of Prof. Dr. Giuseppe Sansone at the Institute of Physics at the University of Freiburg has been able to completely characterize the complex evolution of weak electric fields. The team just published its research findings in the scientific journal Nature Photonics.

Light pulses are electromagnetic waves. Their characteristics such as the direction of oscillation, duration and intensity depend on the spatiotemporal evolution of their electric and magnetic fields. Both of these vectors can run in complex trajectories as a light pulse propagates - for instance, they can move along a circle, an elliptical or describe any variation thereof. The movement occurs on a timescale of several hundred attoseconds, which is much faster than any ordinary electronic or optoelectronic device can measure: an attosecond is a billionth of a billionth of a second.

In order to observe how the electric field moves anyway, the team developed a method using a so-called attosecond laser. "Using this new tool we were able to produce electrons in the form of wave packets that only last a few hundred attoseconds," explains Sansone. During their dynamics, electrons are very sensitive to any kind of external disturbance. The researchers leveraged this characteristic to modify the electrons' trajectories with weak visible light pulses. They were then able to measure how the trajectories had been altered, thereby deducing the intensity and direction of the electric field. "Our method will enable researchers in the future to have a complete characterization of electronic dynamics in solids by measuring the visible light reflected on its surface," says Sansone.

Researchers at the University of Jena, Max Planck Institute for Nuclear Physics in Heidelberg, the National Metrology Institute of Germany (PTB) in Braunschweig and the Politecnico in Milan and the Istituto di Fotonica e Nanotecnologie (Institute for Photonics and Nanotechnology) in Padua, Italy, contributed significantly to these findings.
Original publication:

P. A. Carpeggiani et al. (2017): Vectorial optical field reconstruction by attosecond spatial interferometry.

In: Nature Photonics. DOI 10.1038/nphoton.2017.73

University of Freiburg

Related Evolution Articles:

Prebiotic evolution: Hairpins help each other out
The evolution of cells and organisms is thought to have been preceded by a phase in which informational molecules like DNA could be replicated selectively.
How to be a winner in the game of evolution
A new study by University of Arizona biologists helps explain why different groups of animals differ dramatically in their number of species, and how this is related to differences in their body forms and ways of life.
The galloping evolution in seahorses
A genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
Fast evolution affects everyone, everywhere
Rapid evolution of other species happens all around us all the time -- and many of the most extreme examples are associated with human influences.
Landscape evolution and hazards
Landscapes are formed by a combination of uplift and erosion.
New insight into enzyme evolution
How enzymes -- the biological proteins that act as catalysts and help complex reactions occur -- are 'tuned' to work at a particular temperature is described in new research from groups in New Zealand and the UK, including the University of Bristol.
The evolution of Dark-fly
On Nov. 11, 1954, Syuiti Mori turned out the lights on a small group of fruit flies.
A look into the evolution of the eye
A team of researchers, among them a zoologist from the University of Cologne, has succeeded in reconstructing a 160 million year old compound eye of a fossil crustacean found in southeastern France visible.
Is evolution more intelligent than we thought?
Evolution may be more intelligent than we thought, according to a University of Southampton professor.
The evolution of antievolution policies
Organized opposition to the teaching of evolution in public schoolsin the United States began in the 1920s, leading to the famous Scopes Monkey trial.

Related Evolution Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".