Nav: Home

Texas A&M research suggests strokes may cause increased preference for alcohol

May 31, 2017

Brain changes after stroke may lead to increase in alcohol-seeking behavior, at least in animal models, according to research published Wednesday in the journal Scientific Reports.

Although it is known that excessive alcohol intake (more than two drinks per day) is a risk factor for stroke, there hasn't been much scientific study about how alcohol-related behavior might change after a stroke has occurred. When researchers at the Texas A&M College of Medicine looked into the issue, they found that strokes in a certain part of the brain increase alcohol-seeking behavior and preference for alcohol.

"It's important because although stroke is a severe disease, more and more people are surviving and recovering after their first stroke," said Jun Wang, MD, PhD, assistant professor in the Department of Neuroscience and Experimental Therapeutics at the College of Medicine and co-principal investigator of this project. "Therefore, it is important to study behavior change after stroke, and how that behavior can affect the chances of having another one, which is often fatal."

People who have had one stroke are often advised to limit their consumption of alcohol to help prevent a recurrence, but that may be difficult if damage caused by the stroke itself is encouraging them to actually drink more. That might help explain anecdotal reports that compliance with the instruction not to drink after a stroke is low.

"In an ischemic stroke, a blood vessel to the brain is blocked, which deprives the neurons in the brain of glucose and oxygen," said Farida Sohrabji, PhD, presidential impact fellow and professor in the Department of Neuroscience and Experimental Therapeutics at the College of Medicine and co-principal investigator of this project, who studies acute and long-term consequences of strokes, as well as novel stroke therapies. "Neurons are very dependent on these two nutrients, and without them, neurons very rapidly begin to die."

After an ischemic stroke in the middle cerebral artery--one of the most common types of stroke in humans--the animal models showed much lower overall fluid intake but increased preference for alcohol over water when they did drink. These effects were significant even though the stroke only affected one side of the brain, leaving the other half of the brain without damage. "Their preference for alcohol can be seen five days after stroke and through at least the first month after the stroke," Wang said. "Specifically, when given a choice between water and alcohol, they chose alcohol a higher percentage of the time than they did before the stroke."

What the researchers think is happening is that the stroke kills neurons in a part of the brain called the dorsal lateral striatum, and they stop inhibiting certain neurons in the midbrain. These midbrain neurons, which are now far more excitable, send a signal to a particular type of dopamine receptor, called D1. These D1 receptor-containing cells, located in the dorsomedial striatum, were shown in Wang's previous work to compel the individual to perform an action--like having an alcoholic beverage. "This circuit is interesting because it means that when the dorsal lateral striatum neurons die, the result is increased excitement of the D1 neurons in the dorsomedial striatum," Wang said. "It is this increased excitement that we think is causing alcohol-seeking behavior."

However, when the D1 receptor was inhibited, alcohol-seeking behavior in individuals with stroke damage decreased significantly while the control group didn't exhibit much of a change. "This is a hint at how the brain works," Wang said, "and although we're a long way off, something to inhibit this D1 receptor might be a possible therapeutic target for a drug to help people resist the urge to drink after a stroke."

"As much as possible, we tried to use a model that would replicate the experience of a human patient," Sohrabji said. "Therefore, we think that these findings, although preliminary, might eventually help people who have experienced any type of brain injury, whether a stroke or an accident that causes traumatic brain injury."

This study was a collaboration between the laboratories of Wang, who studies alcohol use disorders, and Sohrabji, who studies ischemic stroke, and funded by a seed grant from the Texas A&M University Health Science Center Division of Research. Other funding for the research was provided by grants from the National Institute on Alcohol Abuse and Alcoholism (NIAAA) and the National Institute of Neurological Disorders and Stroke (NINDS).

About Texas A&M University Health Science Center


Texas A&M University Health Science Center is transforming health through innovative research, education and service in dentistry, medicine, nursing, pharmacy, public health and medical sciences. As an independent state agency and academic unit of Texas A&M University, the health science center serves the state through campuses in Bryan-College Station, Dallas, Temple, Houston, Round Rock, Kingsville, Corpus Christi and McAllen. Learn more at vitalrecord.tamhsc.edu or follow @TAMHSC on Twitter.
-end-


Texas A&M University

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
Neurons that fire together, don't always wire together
As the adage goes 'neurons that fire together, wire together,' but a new paper published today in Neuron demonstrates that, in addition to response similarity, projection target also constrains local connectivity.
Scientists accidentally reprogram mature mouse GABA neurons into dopaminergic-like neurons
Attempting to make dopamine-producing neurons out of glial cells in mouse brains, a group of researchers instead converted mature inhibitory neurons into dopaminergic cells.
More Neurons News and Neurons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.