Nav: Home

Emory researchers closer to cracking neural code of love

May 31, 2017

A team of neuroscientists from Emory University's Silvio O. Conte Center for Oxytocin and Social Cognition has discovered a key connection between areas of the adult female prairie vole's brain reward system that promotes the emergence of pair bonds. Results from this study, available now at Nature.com, could help efforts to improve social abilities in human disorders with impaired social function, such as autism. In addition to the online posting, the study is expected to be in the June 8 printed edition of Nature.

This Conte Center study is the first to find the strength of communication between parts of a corticostriatal circuit in the brain predicts how quickly each female prairie vole becomes affiliative with her partner; prairie voles are socially monogamous and form lifelong bonds with their partners. Additionally, when researchers boosted the communication by using light pulses, the females increased their affiliation toward males, thus further demonstrating the importance of this circuit's activity to pair bonding in prairie voles.

"Prairie voles were critical to our team's findings because studying pair bonding in humans has been traditionally difficult," says Dr. Elizabeth Amadei, a co-lead author on the research. "As humans, we know the feelings we get when we view images of our romantic partners, but, until now, we haven't known how the brain's reward system works to lead to those feelings and to the voles' pair bonding."

Building upon previous work in prairie voles that demonstrated brain chemicals, such as oxytocin and dopamine, act within the medial prefrontal cortex and nucleus accumbens to establish a pair bond, the team set out to address finding the precise neural activity leading to a pair bond. The researchers used probes to listen to neural communication between these two brain regions and then analyzed activity from individual female prairie voles as they spent hours socializing with a male - a cohabitation period that normally leads to a pair bond.

The team discovered that during pair bond formation, the prefrontal cortex, an area involved in decision-making, helps control the rhythmic oscillations of neurons within the nucleus accumbens, the central hub of the brain's reward system. This suggests a functional connection from the cortex shapes neurons activity in the nucleus accumbens.

The team then noticed individual voles varied in the strength of this functional connectivity. Importantly, each subject with stronger connectivity showed more rapid affiliative behavior with her partner, measured as side-by-side huddling contact. Furthermore, the pair's first mating, a behavior that accelerates bonding in voles, strengthened this functional connection, and the amount of strengthening correlated with how quickly the animals subsequently huddled.

According to Larry Young, PhD, co-author and director of the Conte Center, "It is remarkable there are neural signatures of a predisposition to begin huddling with the partner. Similar variation in corticostriatal communication could underlie individual differences in social competencies in psychiatric disorders in humans, and enhancing that communication could improve social function in disorders such as autism." Young is also chief of the Division of Behavioral Neuroscience and Psychiatric Disorders at the Yerkes National Primate Research Center.

The study results led the team to ask more questions, including whether communication between the prefrontal cortex and nucleus accumbens not only correlates with huddling but also causally facilitates it. To answer this, the researchers used optogenetics, a technique that allowed them to enhance communication between the brain areas using light, and enhanced communication between the prefrontal cortex and nucleus accumbens of female voles during a brief cohabitation without mating, which is not conducive to pair bonding. The team discovered optogenetically stimulated animals showed greater preference toward partners compared to a stranger male when given a choice the following day. "It is amazing to think we could influence social bonding by stimulating this brain circuit with a remotely controlled light implanted into the brain," says Zack Johnson, PhD, co-lead author.

The study results identify an important reward circuit in the brain that is activated during social interactions to facilitate bond formation in voles. "Now, we want to know if oxytocin regulates functional connectivity and how circuit activity changes the way the brain processes social information about a partner," says senior author Robert Liu, PhD, associate professor in Emory's Department of Biology. "Our team's work is an example of a larger effort in neuroscience to better quantify how brain circuits function during natural social behaviors. Our goal is to promote better neural communication to boost social cognition in disorders such as autism, in which social functioning can be impaired," Liu continues.
-end-
Additional Emory-based co-authors are graduate students Yong Jun Kwon and Varun Saravanan, undergraduate student Aaron Shpiner, and Wittney Mays, Steven Ryan, PhD, Hasse Walum, PhD, and Donald Rainnie, PhD.

The research represents a unique collaboration among Emory University's Emory College of Arts and Sciences, School of Medicine and Yerkes National Primate Research Center, and the Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University. It was supported by an Emory Neuroscience Initiative grant, the Emory University Biology Graduate Student Award and National institutes of Health grants NIMH R21MH97187, NIMH P50MH100023, NINDS R90DA033462 and the Office of Research Infrastructure Programs' Primate Centers P51OD11132.

The goal of the Silvio O. Conte Center for Oxytocin and Social Cognition is to improve human health by leading coordinated and rigorous research programs to discover the neural mechanisms by which oxytocin modulates social cognition.

The Robert W. Woodruff Health Sciences Center of Emory University is working to pioneer new ways to prevent and treat disease, prepare the next generation to save and improve lives, provide the highest-quality clinical care possible, and serve the community. The center's components include Emory University School of Medicine, Nell Hodgson Woodruff School of Nursing, Rollins School of Public Health, Yerkes National Primate Research Center, Winship Cancer Institute, and Emory Healthcare, the most comprehensive health system in Georgia. The Woodruff Health Sciences Center has $3.8 billion in operating expenditures, almost 25,000 employees (including 3,205 faculty), 1,274 affiliated faculty, 5,115 students and trainees, and a $7.5 billion economic impact on metro Atlanta.

Emory Health Sciences

Related Autism Articles:

Brain protein mutation from child with autism causes autism-like behavioral change in mice
A de novo gene mutation that encodes a brain protein in a child with autism has been placed into the brains of mice.
Autism and theory of mind
Theory of mind, or the ability to represent other people's minds as distinct from one's own, can be difficult for people with autism.
Potential biomarker for autism
A study of young children with autism spectrum disorder published in JNeurosci reveals altered brain waves compared to typically developing children during a motor control task.
Autism and the smell of fear
Autism typically involves the inability to read social cues. We most often associate this with visual difficulty in interpreting facial expression, but new research at the Weizmann Institute of Science suggests that the sense of smell may also play a central role in autism.
Autism often associated with multiple new mutations
Most autism cases are in families with no previous history of the disorder.
State laws requiring autism coverage by private insurers led to increases in autism care
A new study led by researchers at the Johns Hopkins Bloomberg School of Public Health has found that the enactment of state laws mandating coverage of autism spectrum disorder (ASD) was followed by sizable increases in insurer-covered ASD care and associated spending.
Autism's gender patterns
Having one child with autism is a well-known risk factor for having another one with the same disorder, but whether and how a sibling's gender influences this risk has remained largely unknown.
Pinpointing the origins of autism
The origins of autism remain mysterious. What areas of the brain are involved, and when do the first signs appear?
Genes, ozone, and autism
Exposure to ozone in the environment puts individuals with high levels of genetic variation at an even higher risk for developing autism than would be expected just by adding the two risk factors together, a new analysis shows.
New form of autism found
Autism spectrum disorders (ASD) affect around one percent of the world's population and are characterized by a range of difficulties in social interaction and communication.
More Autism News and Autism Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.