Nav: Home

Physicists create 'molecular black hole' using ultra-intense X-ray pulses

May 31, 2017

MANHATTAN, KANSAS -- Heavy atoms absorbing X-rays are sucking the electrons from their molecular neighbors like a black hole pulling in matter. The research is published in the June 1 issue of Nature.

Principle investigators of the study, Artem Rudenko and Daniel Rolles, both assistant professors of physics at Kansas State University, successfully used short pulses of ultra-intense high-energy X-rays to produce a detailed picture of how X-ray radiation interacts with molecules. This was the first time this kind of extreme light has been used to break up molecules, and it may help scientists understand the damages from X-ray radiation when it is used to take an X-ray picture.

Rudenko and Rolles shot iodomethane, CH3I, and iodobenzene, C6H5I, molecules with a powerful X-ray beam at the Linac Coherent Light Source at SLAC National Accelerator Laboratory at Stanford University. According to Rudenko, the X-ray laser is the most powerful in the world with an intensity of 100 quadrillion kilowatts per square centimeter.

"As this powerful X-ray light hits a molecule, the heaviest atom, the iodine, absorbs a few hundred times more X-rays than all the other atoms," Rudenko said. "Then, most of its electrons are stripped away, creating a large positive charge on the iodine."

The positive charge that was created steadily pulls electrons from the other atoms in the molecule, which fills the created vacancies like a short-lived black hole, Rudenko said. Unlike the real black hole, the molecular version lets the electrons out again. They are stripped away in a few femtoseconds. A femtosecond is a millionth of a billionth of a second.

"The cycle repeats itself until the molecule explodes," Rolles said. "In total, 54 of iodomethane's 62 electrons were ejected in this experiment, far more than we anticipated based on earlier studies using less intense X-rays. In addition, the larger molecule, iodobenzene, loses even more electrons."

Understanding the ultrafast dynamic process is important for many applications of intense X-ray lasers, including X-ray imaging of biomolecules.

"Ultra-intense X-rays give us a new and efficient tool to image biological particles, such as proteins and viruses, with high resolution," Rolles said. "But they also damage and eventually destroy the object we are trying to study. If we can understand the mechanisms that cause the damage, theorists can model how the structure changes during the picture-taking process, allowing researchers to either avoid the damage or to account for its influence."

The molecules Rudenko and Rolles used in this experiment are comparatively small model systems that are used to study typical damage effects induced by very intense energetic X-rays.

"Based on our findings, we can predict what will happen in larger systems," Rolles said.

In addition to helping scientists image and understand biological systems, the research also sheds new light on the charge and energy flow in a highly energized molecule. The research of these fundamental processes could be important for solar energy conversion and radiation-driven chemistry -- both areas of interest for the U.S. Department of Energy's Basic Energy Sciences program, which funded the research.

Under Rudenko and Rolles' guidance, two doctoral students in Kansas State University's J.R. Macdonald Laboratory, Xiang Li and Javard Robatjazi, carried out elaborated data analysis for the study and worked on the interpretation of the results.
Robin Santra and her colleagues, all at the Center for Free-Electron Laser Science at Deutsches Elektronen-Synchrotron, or DESY, in Hamburg, Germany, contributed the theoretical work for the study. Other collaborators include researchers from Argonne National Laboratory, Brookhaven National Laboratory, University of Chicago and Northwestern University in the U.S.; University of Hamburg, the Max Planck Institutes and the Physikalisch-Technische Bundesanstalt national metrology institute, Germany; Tohoku University, Japan; the University of Science and Technology Beijing, China; the University of Aarhus, Denmark; and Sorbonne University, France.

Kansas State University

Related Electrons Articles:

Hot electrons harvested without tricks
Semiconductors convert energy from photons into an electron current. However, some photons carry too much energy for the material to absorb.
Cooling nanotube resonators with electrons
In a study in Nature Physics, ICFO researchers report on a technique that uses electron transport to cool a nanomechanical resonator near the quantum regime.
New method for detecting quantum states of electrons
Researchers in the Quantum Dynamics Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) devised a new method -- called image charge detection -- to detect electrons' transitions to quantum states.
Slow electrons to combat cancer
Slow electons can be used to destroy cancer cells - but how exactly this happens has not been well understood.
How light steers electrons in metals
Researchers in the Department of Physics of ETH Zurich have measured how electrons in so-called transition metals get redistributed within a fraction of an optical oscillation cycle.
Twisting whirlpools of electrons
Using a novel approach, EPFL physicists have been able to create ultrafast electron vortex beams, with significant implications for fundamental physics, quantum computing, future data-storage and even certain medical treatments.
Inner electrons behave differently in aromatic hydrocarbons
In an international research collaboration between Tsinghua University in Beijing and Sorbonne University in Paris, scientists found that four hydrocarbon molecules, known for their internal ring structure, have a lower threshold for the release of excess energy than molecules without a similar ring structure, because one of their electrons decays from a higher to a lower energy level, a phenomenon called the Auger effect.
Exotic spiraling electrons discovered by physicists
Rutgers and other physicists have discovered an exotic form of electrons that spin like planets and could lead to advances in lighting, solar cells, lasers and electronic displays.
Racing electrons under control
The advantage is that electromagnetic light waves oscillate at petaherz frequency.
Electrons go with the flow
You turn on a switch and the light switches on because electricity 'flows'.
More Electrons News and Electrons Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at