Nav: Home

Physicists create 'molecular black hole' using ultra-intense X-ray pulses

May 31, 2017

MANHATTAN, KANSAS -- Heavy atoms absorbing X-rays are sucking the electrons from their molecular neighbors like a black hole pulling in matter. The research is published in the June 1 issue of Nature.

Principle investigators of the study, Artem Rudenko and Daniel Rolles, both assistant professors of physics at Kansas State University, successfully used short pulses of ultra-intense high-energy X-rays to produce a detailed picture of how X-ray radiation interacts with molecules. This was the first time this kind of extreme light has been used to break up molecules, and it may help scientists understand the damages from X-ray radiation when it is used to take an X-ray picture.

Rudenko and Rolles shot iodomethane, CH3I, and iodobenzene, C6H5I, molecules with a powerful X-ray beam at the Linac Coherent Light Source at SLAC National Accelerator Laboratory at Stanford University. According to Rudenko, the X-ray laser is the most powerful in the world with an intensity of 100 quadrillion kilowatts per square centimeter.

"As this powerful X-ray light hits a molecule, the heaviest atom, the iodine, absorbs a few hundred times more X-rays than all the other atoms," Rudenko said. "Then, most of its electrons are stripped away, creating a large positive charge on the iodine."

The positive charge that was created steadily pulls electrons from the other atoms in the molecule, which fills the created vacancies like a short-lived black hole, Rudenko said. Unlike the real black hole, the molecular version lets the electrons out again. They are stripped away in a few femtoseconds. A femtosecond is a millionth of a billionth of a second.

"The cycle repeats itself until the molecule explodes," Rolles said. "In total, 54 of iodomethane's 62 electrons were ejected in this experiment, far more than we anticipated based on earlier studies using less intense X-rays. In addition, the larger molecule, iodobenzene, loses even more electrons."

Understanding the ultrafast dynamic process is important for many applications of intense X-ray lasers, including X-ray imaging of biomolecules.

"Ultra-intense X-rays give us a new and efficient tool to image biological particles, such as proteins and viruses, with high resolution," Rolles said. "But they also damage and eventually destroy the object we are trying to study. If we can understand the mechanisms that cause the damage, theorists can model how the structure changes during the picture-taking process, allowing researchers to either avoid the damage or to account for its influence."

The molecules Rudenko and Rolles used in this experiment are comparatively small model systems that are used to study typical damage effects induced by very intense energetic X-rays.

"Based on our findings, we can predict what will happen in larger systems," Rolles said.

In addition to helping scientists image and understand biological systems, the research also sheds new light on the charge and energy flow in a highly energized molecule. The research of these fundamental processes could be important for solar energy conversion and radiation-driven chemistry -- both areas of interest for the U.S. Department of Energy's Basic Energy Sciences program, which funded the research.

Under Rudenko and Rolles' guidance, two doctoral students in Kansas State University's J.R. Macdonald Laboratory, Xiang Li and Javard Robatjazi, carried out elaborated data analysis for the study and worked on the interpretation of the results.
-end-
Robin Santra and her colleagues, all at the Center for Free-Electron Laser Science at Deutsches Elektronen-Synchrotron, or DESY, in Hamburg, Germany, contributed the theoretical work for the study. Other collaborators include researchers from Argonne National Laboratory, Brookhaven National Laboratory, University of Chicago and Northwestern University in the U.S.; University of Hamburg, the Max Planck Institutes and the Physikalisch-Technische Bundesanstalt national metrology institute, Germany; Tohoku University, Japan; the University of Science and Technology Beijing, China; the University of Aarhus, Denmark; and Sorbonne University, France.

Kansas State University

Related Electrons Articles:

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.
Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.
Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.
Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.
Using light to put a twist on electrons
Method with polarized light can create and measure nonsymmetrical states in a layered material.
What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.
Electrons in rapid motion
Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique.
Taming electrons with bacteria parts
In a new study, scientists at the MSU-DOE Plant Research Laboratory report a new synthetic system that could guide electron transfer over long distances.
Hot electrons harvested without tricks
Semiconductors convert energy from photons into an electron current. However, some photons carry too much energy for the material to absorb.
Cooling nanotube resonators with electrons
In a study in Nature Physics, ICFO researchers report on a technique that uses electron transport to cool a nanomechanical resonator near the quantum regime.
More Electrons News and Electrons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.