Nav: Home

The brain is able to anticipate painful movements following injury

May 31, 2018

When people are injured, how does the brain adapt the body's movements to help avoid pain? New research published in The Journal of Physiology investigates this question.

After an injury, our body will rapidly associate pain to a particular movement and modify which muscles we use accordingly. This new research shows that the message from motor brain areas toward a muscle is reduced if this muscle is responsible for producing a painful movement and increased if it the muscle counteracts that movement.

They also observed that if the brain knows the movement will cause pain then the reaction time to perform the movement is longer, but the movements are performed quicker, suggesting a strategy of 'getting it over and done with'.

This shows that the brain is able to anticipate that particular movements will cause pain, allowing us to adapt and move differently. This research is focused on how the body responds to the anticipation of an experimental acute pain (i.e. a transient pain lasting a fraction of a second during the execution of a movement) but it may be possible to use these findings to help preventing musculoskeletal pain disorders.

When people are injured they can quickly learn to associate pain to a given movement and change the way the body moves to avoid or minimize pain. Understanding how this occurs in the brain is crucial for identifying the mechanisms that lead to the long-term maintenance of pain.

The research conducted by Laval University, Quebec, in conjunction with the Center for Interdisciplinary Research in Rehabilitation and Social Integration, Quebec, involved measuring the link between motor brain areas and the biceps as they prepared to move. The investigation was carried out on thirty healthy participants, in which half received painful stimulations during flexion movements and the other half during extension movements.

Importantly, as the experimental pain was induced with laser simulations, the results cannot be directly transferred to a population of patients suffering from clinical pain.

Catherine Mercier, corresponding author of the study, said:

'This discovery is important because it confirms the establishment of protective strategies during the anticipation of acute pain. It marks an important advance to further our understanding of the mechanisms involved in the transition from acute to chronic pain. Indeed, a recent theory on the effect of pain on motor control states that while protective strategies may be initially relevant and lead to short-term pain alleviation, they may potentially have detrimental long-term consequences and lead to chronic pain.'
-end-


The Physiological Society

Related Brain Articles:

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.