Nav: Home

Organic laser diodes move from dream to reality

May 31, 2019

Researchers from Japan have demonstrated that a long-elusive kind of laser diode based on organic semiconductors is indeed possible, paving the way for the further expansion of lasers in applications such as biosensing, displays, healthcare, and optical communications.

Long considered a holy grail in the area of light-emitting devices, organic laser diodes use carbon-based organic materials to emit light instead of the inorganic semiconductors, such as gallium arsenide and gallium nitride, used in traditional devices.

The lasers are in many ways similar to organic light-emitting diodes (OLEDs), in which a thin layer of organic molecules emits light when electricity is applied. OLEDs have become a popular choice for smartphone displays because of their high efficiency and vibrant colors, which can easily be changed by designing new organic molecules.

Organic laser diodes produce a much purer light enabling additional applications, but they require currents that are magnitudes higher than those used in OLEDs to achieve the lasing process. These extreme conditions caused previously studied devices to break down well before lasing could be observed.

Further complicating progress, previous claims of electrically generated lasing from organic materials turned out to be false on several occasions, with other phenomena being mistaken for lasing because of insufficient characterization.

But now, scientists from the Center for Organic Photonics and Electronics Research (OPERA) at Kyushu University report in the journal Applied Physics Express that they have enough data to convincingly show that organic semiconductor laser diodes have finally been realized.

"I think that many people in the community were doubting whether we would actually one day see the realization of an organic laser diode," says Atula S. D. Sandanayaka, lead author on the paper, "but by slowing chipping away at the various performance limitations with improved materials and new device structures, we finally did it."

A critical step in lasing is the injection of a large amount of electrical current into the organic layers to achieve a condition called population inversion. However, the high resistance to electricity of many organic materials makes it difficult to get enough electrical charges in the materials before they heat up and burn out.

On top of that, a variety of loss processes inherent to most organic materials and devices operating under high currents lowers efficiency, pushing the necessary current up even higher.

To overcome these obstacles, the research group led by Prof. Chihaya Adachi used a highly efficient organic light-emitting material (BSBCz) with a relatively low resistance to electricity and a low amount of losses--even when injected with large amounts of electricity. But having the right material alone was not enough.

They also designed a device structure with a grid of insulating material on top of one of the electrodes used to inject electricity into the organic thin films. Such grids--called distributed feedback structures--are known to produce the optical effects required for lasing, but the researchers took it one step further.

"By optimizing these grids, we could not only obtain the desired optical properties but also control the flow of electricity in the devices and minimize the amount of electricity required to observe lasing from the organic thin film," says Adachi.

The researchers are so confident in the promise of these new devices that they founded the startup company KOALA Tech Inc.--short for Kyushu Organic Laser Technology Inc.--on March 22, 2019, to accelerate research and overcome the final obstacles remaining for using the organic laser diodes in commercial applications.

The founding members of KOALA Tech Inc., Prof. Chihaya Adachi, Dr. Jean-Charles Ribierre, Dr. Fatima Bencheikh, and Dr. Takashi Fujihara, are now hard at work improving the performance of their organic laser diodes to bring this most advanced organic light-emitting technology to the world.
-end-
For more information about this research, see "Indication of current-injection lasing from an organic semiconductor," Atula S. D. Sandanayaka, Toshinori Matsushima, Fatima Bencheikh, Shinobu Terakawa, William J. Potscavage, Jr., Chuanjiang Qin, Takashi Fujihara, Kenichi Goushi, Jean-Charles Ribierre, and Chihaya Adachi, Applied Physics Express (2019), https://doi.org/10.7567/1882-0786/ab1b90

Kyushu University

Related Electricity Articles:

Static electricity as strong as lightening can be saved in a battery
Prof. Dong Sung Kim and his joint research team presented a new technology that can increase the amount of power generated by a triboelectric nanogenerator.
To make amino acids, just add electricity
By finding the right combination of abundantly available starting materials and catalyst, Kyushu University researchers were able to synthesize amino acids with high efficiency through a reaction driven by electricity.
New assessment finds EU electricity decarbonization discourse in need of overhaul
It's well known that the EU is focusing its efforts on decarbonizing its economy.
Using renewable electricity for industrial hydrogenation reactions
The University of Pittsburgh's James McKone's research on using renewable electricity for industrial hydrogenation reactions is featured in the Journal of Materials Chemistry A's Emerging Investigators special issue.
Water + air + electricity = hydrogen peroxide
A reactor developed by Rice University engineers produces pure hydrogen peroxide solutions from water, air and energy.
Producing electricity at estuaries using light and osmosis
Researchers at EPFL are working on a technology to exploit osmotic energy -- a source of power that's naturally available at estuaries, where fresh water comes into contact with seawater.
Experimental device generates electricity from the coldness of the universe
A drawback of solar panels is that they require sunlight to generate electricity.
Capturing bacteria that eat and breathe electricity
WSU researchers traveled to Yellowstone National Park to find bacteria that may help solve some of the biggest challenges facing humanity -- environmental pollution and sustainable energy.
Converting Wi-Fi signals to electricity with new 2D materials
Imagine a world where smartphones, laptops, wearables, and other electronics are powered without batteries.
Static electricity could charge our electronics
Static electricity is one of the most common, yet poorly understand, forms of power generation.
More Electricity News and Electricity Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#555 Coronavirus
It's everywhere, and it felt disingenuous for us here at Science for the People to avoid it, so here is our episode on Coronavirus. It's ok to give this one a skip if this isn't what you want to listen to right now. Check out the links below for other great podcasts mentioned in the intro. Host Rachelle Saunders gets us up to date on what the Coronavirus is, how it spreads, and what we know and don't know with Dr Jason Kindrachuk, Assistant Professor in the Department of Medical Microbiology and infectious diseases at the University of Manitoba. And...
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at Radiolab.org/donate.