Nav: Home

DNA origami to scale-up molecular motors

May 31, 2019

Joint press release by Hokkaido University, Kansai University, and Tokyo Institute of Technology.

"We successfully demonstrated programmed self-assembly of a biomolecular motor system," write the researchers from Japan and Germany who conducted the study.

The biomolecular motor system, consisting of fibrous microtubules and motor protein kinesins, plays an essential role in cellular transportation systems. Scientists believe they can utilize the motors in molecular robotics but it remains difficult to assemble a larger system from the tiny molecules.

In the current study published in Nano Letters, the research team including Akira Kakugo of Hokkaido University, Akinori Kuzuya of Kansai University, and Akihiko Konagaya of Tokyo Institute of Technology developed a system combining DNA origami and microtubules. The DNA origami were formed from six DNA helices bundled together. Mixing the two components caused the microtubules to self-assemble around the DNA origami forming star-shaped structures. This self-assembly was made possible by the binding of complementary DNA strands attached to each component.

The team then designed a "kinesin linker" which is made of four kinesin motor proteins radiating from a central core protein. These kinesin linkers joined the microtubules together, causing multiple star-like assemblies to connect, forming a much larger hierarchical network.

When adenosine triphosphate (ATP), a molecule which stores and carries energy, was added to the system, the kinesin linkers moved, causing the microtubular network to dynamically contract within a matter of minutes. This resembled the contraction of smooth muscles according to the researchers.

This dynamic contraction only happened when the DNA origami were present, suggesting the importance of the hierarchical assembly within the microtubular network. "Further studies could lead to the use of DNA for controlled, programmable self-assembly and contraction of biomolecular motors. Such motors could find applications in molecular robotics and the development of microvalves for microfluidic devices," says Akira Kakugo.
-end-


Hokkaido University

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...