Nav: Home

Hard food, strong jaw: Jawbone structure responds to forceful chewing

May 31, 2019

Researchers from Tokyo Medical and Dental University(TMDU), the Japan Agency for Medical Research and Development, and Kyoto University found that mice that ate foods requiring higher chewing force showed increased bone formation, impacting jawbone shape.

Tokyo, Japan -- Throughout an animal's lifespan, bone tissue in the skeleton is continuously restructured in response to changes in applied force, such as those associated with exercise and locomotion. Examining how the structure of the jawbone varies with the intense chewing force, or masticatory force, may illuminate the mechanisms that lead to the reconstruction of bone tissue.

Masamu Inoue and Takehito Ono of Tokyo Medical and Dental University(TMDU)have now uncovered how and under what circumstances jawbone reconstruction takes place. Although previous studies found that the hardness of food is correlated with jaw structure, it was not yet clear whether masticatory force could directly impact bone structure. In this study, the researchers uncovered new information about the cellular and molecular changes that enable bone to adapt to changes in mechanical stress.

They did this by creating a novel mouse model of increased mastication in which mice were fed harder foods (hard diet: HD) to increase chewing force. They predict if increased chewing directly lead to changes in jawbone structure using a computer simulation. Histological and gene expression analyses revealed that the mechanical loading onto the jawbone changes cytokine expression of the osteocytes in the bone, resulting in enhanced bone formation. They recently published their findings in Scientific Reports.

"Although there was existing evidence for the correlation between variations in facial profile and differences in mastication force, evidence for causation was lacking" says Masamu Inoue, co-first author. "Additionally, the absence of an animal model of increased mastication made it difficult to study this topic in prior research."

The researchers found that the width of the masseter muscle, which is critical for mastication, increased in the HD-fed mice. The HD led to more activation in the primary motor cortex of the brain, which controls the masticatory muscles. Thus, the HD increased chewing and the amount of force applied to the jawbone.

In vivo micro-computed tomography (micro-CT) analysis showed that mechanical load onto the jawbone by the HD affected its shape, in the way that predicted by the computer simulation. The simulation also indicated that these morphological changes redistributed the mechanical stress generated in the bone by the HD, indicating that jawbone is able to adapt its shape to changes in mechanical force.

Additionally, they found that increasing the force applied to the jawbone stimulated osteocytes to produce more IGF-1, one of main growth factors that promotes bone formation. This alteration led to bone formation, resulting in morphological changes in the jawbone.

"Our data indicate that masticatory force can prompt changes in facial structure by modulating the function of cells that regulate bone reconstruction," says co-author Tomoki Nakashima. "This discovery--that increased chewing itself can directly change the shape of the jawbone--could facilitate the development of treatments for skeletal abnormalities, such as jaw deformities."
-end-


Tokyo Medical and Dental University

Related Bone Formation Articles:

Another reason to exercise: Burning bone fat -- a key to better bone health
It's a fat-burning secret anyone interested in bone health should know.
New insights on triggering muscle formation
A team of scientists led by Lorenzo Puri, M.D., Ph.D., has identified a previously unrecognized step in stem cell-mediated muscle regeneration.
Prolonged sleep disturbance can lead to lower bone formation
Insufficient sleep, a common problem that has been linked to chronic disease risk, might also be an unrecognized risk factor for bone loss.
Weight-bearing exercises promote bone formation in men
Osteoporosis affects more than 200 million people worldwide and is a serious public health concern, according to the National Osteoporosis Foundation.
New evidence on the formation of the solar system
International research involving a Monash University scientist is using new computer models and evidence from meteorites to show that a low-mass supernova triggered the formation of our solar system.
Getting to bottom of crater formation
The first results of a recent drilling expedition at Chicxulub crater -- one of the only known craters on Earth with a well-preserved 'peak ring' -- reveal how it collapsed to form a complex crater.
The rise and fall of galaxy formation
An international team of astronomers has charted the rise and fall of galaxies over 90 percent of cosmic history.
Injected mix of bone-augmenting agents causes new bone growth in mouse jaws
A Tokyo Medical and Dental University(TMDU)-centered research team combined a protein that stimulates bone formation with a peptide that promotes osteoblast differentiation, and delivered them into mouse jawbones by injection within a gelatin carrier.
Soluble corn fiber can help young women build bone, and older women preserve bone
Supplementing with soluble corn fiber at two critical times in a woman's life -- adolescence and post-menopause -- can help build and retain calcium in bone, according to new research from Purdue University.
Opioids regulate spermatozoon formation
Infertility has become a major medical and social problem worldwide and many of the cases are due to male infertility.

Related Bone Formation Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".