Nav: Home

Hard food, strong jaw: Jawbone structure responds to forceful chewing

May 31, 2019

Researchers from Tokyo Medical and Dental University(TMDU), the Japan Agency for Medical Research and Development, and Kyoto University found that mice that ate foods requiring higher chewing force showed increased bone formation, impacting jawbone shape.

Tokyo, Japan -- Throughout an animal's lifespan, bone tissue in the skeleton is continuously restructured in response to changes in applied force, such as those associated with exercise and locomotion. Examining how the structure of the jawbone varies with the intense chewing force, or masticatory force, may illuminate the mechanisms that lead to the reconstruction of bone tissue.

Masamu Inoue and Takehito Ono of Tokyo Medical and Dental University(TMDU)have now uncovered how and under what circumstances jawbone reconstruction takes place. Although previous studies found that the hardness of food is correlated with jaw structure, it was not yet clear whether masticatory force could directly impact bone structure. In this study, the researchers uncovered new information about the cellular and molecular changes that enable bone to adapt to changes in mechanical stress.

They did this by creating a novel mouse model of increased mastication in which mice were fed harder foods (hard diet: HD) to increase chewing force. They predict if increased chewing directly lead to changes in jawbone structure using a computer simulation. Histological and gene expression analyses revealed that the mechanical loading onto the jawbone changes cytokine expression of the osteocytes in the bone, resulting in enhanced bone formation. They recently published their findings in Scientific Reports.

"Although there was existing evidence for the correlation between variations in facial profile and differences in mastication force, evidence for causation was lacking" says Masamu Inoue, co-first author. "Additionally, the absence of an animal model of increased mastication made it difficult to study this topic in prior research."

The researchers found that the width of the masseter muscle, which is critical for mastication, increased in the HD-fed mice. The HD led to more activation in the primary motor cortex of the brain, which controls the masticatory muscles. Thus, the HD increased chewing and the amount of force applied to the jawbone.

In vivo micro-computed tomography (micro-CT) analysis showed that mechanical load onto the jawbone by the HD affected its shape, in the way that predicted by the computer simulation. The simulation also indicated that these morphological changes redistributed the mechanical stress generated in the bone by the HD, indicating that jawbone is able to adapt its shape to changes in mechanical force.

Additionally, they found that increasing the force applied to the jawbone stimulated osteocytes to produce more IGF-1, one of main growth factors that promotes bone formation. This alteration led to bone formation, resulting in morphological changes in the jawbone.

"Our data indicate that masticatory force can prompt changes in facial structure by modulating the function of cells that regulate bone reconstruction," says co-author Tomoki Nakashima. "This discovery--that increased chewing itself can directly change the shape of the jawbone--could facilitate the development of treatments for skeletal abnormalities, such as jaw deformities."
-end-


Tokyo Medical and Dental University

Related Bone Formation Articles:

Addition of growth factors to unique system helps new bone formation
New technique aids bone formation.
'Bone in a dish' opens new window on cancer initiation, metastasis, bone healing
Researchers in Oregon have engineered a material that replicates human bone tissue with an unprecedented level of precision, from its microscopic crystal structure to its biological activity.
UCI team pioneers cancer treatment that targets bone metastases while sparing bone
University of California, Irvine researchers have developed and tested on mice a therapeutic treatment that uses engineered stem cells to target and kill cancer bone metastases while preserving the bone.
Replicating fetal bone growth process could help heal large bone defects
To treat large gaps in long bones, like the femur, which often can result in amputation, researched developed a process in a rodent model that partially recreates the bone growth process that occurs before birth.
3D-printed 'hyperelastic bone' may help generate new bone for skull reconstruction
Defects of the skull and facial bones can pose difficult challenges for plastic and reconstructive surgeons.
From foam to bone: Plant cellulose can pave the way for healthy bone implants
Researchers from the University of British Columbia and McMaster University have developed what could be the bone implant material of the future: an airy, foamlike substance from plant cellulose that can be injected into the body and provide scaffolding for the growth of new bone.
New regulatory factor identified in bone formation
Researchers report the identification of a novel transcription factor that helps regulate the differentiation of mesenchymal stem cells into bone in mice.
A molecular look at nascent HDL formation
Researchers at Boston University pin down a molecular interaction between an apolipoprotein and a lipid transporter that's key to reverse cholesterol transport.
Beyond bone mineral density: Additional bone traits predict risk for fracture
In the largest prospective study of its kind, researchers from Beth Israel Deaconess Medical Center (BIDMC) and the Institute for Aging Research at Hebrew SeniorLife used high-resolution tomography imaging to assess whether bone characteristics besides bone mineral density can predict risk of fracture.
UCLA researchers discover gene that controls bone-to-fat ratio in bone marrow
UCLA researchers have found that the PGC-1α gene, previously known to control human metabolism, also controls the equilibrium of bone and fat in bone marrow and also how an adult stem cell expresses its final cell type.
More Bone Formation News and Bone Formation Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.