Nav: Home

The body responds to variations in light between the day and night independently of the brain

May 31, 2019

During the day, we experience a series of physical, mental and behavioural changes know as circadian rhythms. These changes are governed by a central clock, located in the hypothalamus, which lies in the centre of the brain. This clock is responsible for synchronizing our tissues to ensure that their functions are coordinated and that they work with the same clock.

Scientists at the Institute for Research in Biomedicine (IRB Barcelona) have revealed that although each tissue receives information from the central clock in order to coordinate its functions, each one also has the capacity to respond independently to variations in light and to detect changes in light intensity between the day and night.

Published in two papers in the journal Cell, the studies confirm that this autonomy allows tissues to maintain minimal functions even when another tissue in our body is failing. "The results of these studies are likely to be particularly relevant during aging and in diseases in which high tissue interdependence would lead to a general deterioration of the organism," says Salvador Aznar Benitah, head of the Stem Cells and Cancer Laboratory at IRB Barcelona.

Until now, there was no suitable animal model in which to test whether the clock regulating all our organs and tissues is coordinated by the brain or, as has been observed, whether these organs and tissue are capable of responding directly to the cyclic environmental changes that occur every day. This study, which has been conducted by IRB Barcelona, in collaboration with Paolo Sassone-Corsi's team at the University of California, Irvine (US), has been possible thanks to a new mouse model that has allowed researchers to isolate the communication of each tissue from the rest.

The first authors of this work, postdoctoral fellow Patrick Simon Welz and "La Caixa" PhD student Valentina María Zinna, both at IRB Barcelona, compared the circadian rhythms of the epidermis and liver of this mouse model--in which there is no communication between different tissues--with those of healthy mice and mice with an impaired central clock. Using this approach, they confirmed the autonomy of both kinds of tissue to respond to the variation in light that occurs as the day progresses.

The central clock communicates with the entire body

As already mentioned, although each tissue is autonomous, this does not imply the absence of communication with the rest of the body. "We confirmed that the central clock communicates from the brain with the rest of the body, providing useful information to ensure its correct function, informing, for example, the gastrointestinal tract, liver and pancreas that it is time to eat and allowing them to prepare for digestion. But when this communication fails, each organ is able to know what time it is and thus to perform their basic functions," explains ICREA researcher Salvador Aznar Benitah.

"Our results have important implications for health," adds Aznar Benitah. Our current lifestyle exposes us to light when we should be in darkness. Given that each organ is able to respond independently to light, body functions that should occur during the day take place at night. This daily phase difference or social jet-lag might be responsible for premature aging and the development of certain pathologies.
-end-
The studies have been supported by the European Research Council (ERC), the Catalan Government, the Ministry of Science, Innovation and Universities (previously called MIMECO), the Botín Foundation, Banco Santander Universidades, the EU's Horizon 2020 Framework programme, and the "La Caixa" Banking Foundation.

Reference article:

Welz PS#, Zinna VM, Symeonidi A, Koronowski K, Kinouchi K, Smith JG, Guillén IM, Castellanos A, Prats N, Caballero JM, Sassone-Corsi P# and Benitah SA#.

Bmal1-drive tissue clocks respond independently to light to regulate homeostasis.

Cell (2019) DOI: 10.1016/j.cell.2019.05.009

Kevin B. Koronowski1*, Kenichiro Kinouchi1*, Patrick-Simon Welz2, Valentina Maria Zinna2, Jiejun Shi3,4, Muntaha Samad5, Siwei Chen5, Jacob G. Smith1, Jason Kinchen6, Wei Li3,4, Pierre Baldi5, Salvador Aznar Benitah#, and Paolo Sassone-Corsi1#.

Defining the autonomy of the liver circadian clock.

Cell (2019) DOI: 10.1016/j.cell.2019.04.025

Institute for Research in Biomedicine (IRB Barcelona)

Related Brain Articles:

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
Is whole-brain radiation still best for brain metastases from small-cell lung cancer?
University of Colorado Cancer Center study compares outcomes of 5,752 small-cell lung cancer patients who received whole-brain radiation therapy (WBRT) with those of 200 patients who received stereotactic radiosurgery (SRS), finding that the median overall survival was actually longer with SRS (10.8 months with SRS versus 7.1 months with WBRT).
Atlas of brain blood vessels provides fresh clues to brain diseases
Even though diseases of the brain vasculature are some of the most common causes of death in the West, knowledge of these blood vessels is limited.
Brain sciences researcher pinpoints brain circuit that triggers fear relapse
Steve Maren, the Claude H. Everett Jr. '47 Chair of Liberal Arts professor in the Department of Psychological and Brain Sciences at Texas A&M University, and his Emotion and Memory Systems Laboratory (EMSL) have made a breakthrough discovery in the process of fear relapse.
More Brain News and Brain Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.