Nav: Home

The body responds to variations in light between the day and night independently of the brain

May 31, 2019

During the day, we experience a series of physical, mental and behavioural changes know as circadian rhythms. These changes are governed by a central clock, located in the hypothalamus, which lies in the centre of the brain. This clock is responsible for synchronizing our tissues to ensure that their functions are coordinated and that they work with the same clock.

Scientists at the Institute for Research in Biomedicine (IRB Barcelona) have revealed that although each tissue receives information from the central clock in order to coordinate its functions, each one also has the capacity to respond independently to variations in light and to detect changes in light intensity between the day and night.

Published in two papers in the journal Cell, the studies confirm that this autonomy allows tissues to maintain minimal functions even when another tissue in our body is failing. "The results of these studies are likely to be particularly relevant during aging and in diseases in which high tissue interdependence would lead to a general deterioration of the organism," says Salvador Aznar Benitah, head of the Stem Cells and Cancer Laboratory at IRB Barcelona.

Until now, there was no suitable animal model in which to test whether the clock regulating all our organs and tissues is coordinated by the brain or, as has been observed, whether these organs and tissue are capable of responding directly to the cyclic environmental changes that occur every day. This study, which has been conducted by IRB Barcelona, in collaboration with Paolo Sassone-Corsi's team at the University of California, Irvine (US), has been possible thanks to a new mouse model that has allowed researchers to isolate the communication of each tissue from the rest.

The first authors of this work, postdoctoral fellow Patrick Simon Welz and "La Caixa" PhD student Valentina María Zinna, both at IRB Barcelona, compared the circadian rhythms of the epidermis and liver of this mouse model--in which there is no communication between different tissues--with those of healthy mice and mice with an impaired central clock. Using this approach, they confirmed the autonomy of both kinds of tissue to respond to the variation in light that occurs as the day progresses.

The central clock communicates with the entire body

As already mentioned, although each tissue is autonomous, this does not imply the absence of communication with the rest of the body. "We confirmed that the central clock communicates from the brain with the rest of the body, providing useful information to ensure its correct function, informing, for example, the gastrointestinal tract, liver and pancreas that it is time to eat and allowing them to prepare for digestion. But when this communication fails, each organ is able to know what time it is and thus to perform their basic functions," explains ICREA researcher Salvador Aznar Benitah.

"Our results have important implications for health," adds Aznar Benitah. Our current lifestyle exposes us to light when we should be in darkness. Given that each organ is able to respond independently to light, body functions that should occur during the day take place at night. This daily phase difference or social jet-lag might be responsible for premature aging and the development of certain pathologies.
-end-
The studies have been supported by the European Research Council (ERC), the Catalan Government, the Ministry of Science, Innovation and Universities (previously called MIMECO), the Botín Foundation, Banco Santander Universidades, the EU's Horizon 2020 Framework programme, and the "La Caixa" Banking Foundation.

Reference article:

Welz PS#, Zinna VM, Symeonidi A, Koronowski K, Kinouchi K, Smith JG, Guillén IM, Castellanos A, Prats N, Caballero JM, Sassone-Corsi P# and Benitah SA#.

Bmal1-drive tissue clocks respond independently to light to regulate homeostasis.

Cell (2019) DOI: 10.1016/j.cell.2019.05.009

Kevin B. Koronowski1*, Kenichiro Kinouchi1*, Patrick-Simon Welz2, Valentina Maria Zinna2, Jiejun Shi3,4, Muntaha Samad5, Siwei Chen5, Jacob G. Smith1, Jason Kinchen6, Wei Li3,4, Pierre Baldi5, Salvador Aznar Benitah#, and Paolo Sassone-Corsi1#.

Defining the autonomy of the liver circadian clock.

Cell (2019) DOI: 10.1016/j.cell.2019.04.025

Institute for Research in Biomedicine (IRB Barcelona)

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
More Brain News and Brain Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...