Nav: Home

In hot pursuit of dinosaurs: Tracking extinct species on ancient Earth via biogeography

May 31, 2019

One researcher at the University of Tokyo is in hot pursuit of dinosaurs, tracking extinct species around ancient Earth. Identifying the movements of extinct species from millions of years ago can provide insights into ancient migration routes, interaction between species, and the movement of continents.

"If we find fossils on different continents from closely related species, then we can guess that at some point there must have been a connection between those continents," said Tai Kubo, Ph.D., a postdoctoral researcher affiliated with the University Museum at the University of Tokyo.

A map of life - biogeography

Previous studies in biogeography -- the geographic distribution of plants and animals -- had not considered the evolutionary relationships between ancient species. The new method that Kubo designed, called biogeographical network analysis, converts evolutionary relationships into geographical relationships.

For example, cats and dogs are more closely related to each other than to kangaroos. Therefore, a geographical barrier must have separated the ancestors of kangaroos from the ancestors of cats and dogs well before cats and dogs became separate species.

Most fossils are found in just a few hot-spot locations around the world and many ancient species with backbones (vertebrates) are known from just one fossil of that species. These limitations mean that a species' fossils cannot reveal the full area of where it was distributed around the world.

"Including evolutionary relationships allows us to make higher resolution maps for where species may have migrated," said Kubo.

The analysis used details from evolutionary studies, the location of fossil dig sites, and the age of the fossils. Computer simulations calculated the most likely scenarios for the migration of species between continents on the Cretaceous-era Earth, 145 to 66 million years ago.

North and south divide

This new analysis verified what earlier studies suggested: nonavian dinosaurs were divided into a group that lived in the Northern Hemisphere and another that lived in the Southern Hemisphere, and that those two groups could still move back and forth between Europe and Africa during the Early Cretaceous period (145 to 100 million years ago), but became isolated in the Late Cretaceous period (100 to 66 million years ago).

During the Early Cretaceous period, there were three major supercontinents: North America-Europe-Asia, South America-Africa, and Antarctica-India-Australia.

By the Late Cretaceous period, only the North America-Europe-Asia supercontinent remained. The other supercontinents had separated into the continents we know today, although they had not yet drifted to their current locations.

"During the Late Cretaceous period, high sea levels meant that Europe was a series of isolated islands. It makes sense that nonavian dinosaur species differentiated between Africa and Europe during that time," said Kubo.

Kubo plans to complete additional biogeographical analyses for different time periods to continue tracking extinct species around the world and through time.
-end-
Journal Article

Kubo, T. 27 May 2019. Biogeographical Network Analysis of Cretaceous Terrestrial Tetrapods: A Phylogeny-Based Approach. Systematic Biology, syz024. DOI: 10.1093/sysbio/syz024

Related Links

Tai Kubo's profile page (Japanese): http://www.um.u-tokyo.ac.jp/people/faculty_kubotai.html

The University Museum: http://www.um.u-tokyo.ac.jp/index_en.html

Research contact

Postdoctoral Fellow Tai Kubo, Ph.D.
The University Museum, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, JAPAN
Tel: +81-(0)3-5841-2481
E-mail: taikubo@um.u-tokyo.ac.jp; taikubo@hotmail.com

Press Contact

Ms. Caitlin Devor
Division for Strategic Public Relations, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, JAPAN
Tel: +81-3-5841-0876
Email: press-releases.adm@gs.mail.u-tokyo.ac.jp

About the University of Tokyo

The University of Tokyo is Japan's leading university and one of the world's top research universities. The vast research output of some 6,000 researchers is published in the world's top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 2,000 international students. Find out more at http://www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.

University of Tokyo

Related Dinosaurs Articles:

In death of dinosaurs, it was all about the asteroid -- not volcanoes
Volcanic activity did not play a direct role in the mass extinction event that killed the dinosaurs, according to an international, Yale-led team of researchers.
Discriminating diets of meat-eating dinosaurs
A big problem with dinosaurs is that there seem to be too many meat-eaters.
Jurassic dinosaurs trotted between Africa and Europe
Dinosaur footprints found in several European countries, very similar to others in Morocco, suggest that they could have been dispersed between the two continents by land masses separated by a shallow sea more than 145 million years ago.
In the shadow of the dinosaurs
Research published this Wednesday in Scientific Reports describes Clevosaurus hadroprodon, a new reptile species from Rio Grande do Sul state in southern Brazil.
When the dinosaurs died, lichens thrived
When the asteroid hit, dinosaurs weren't the only ones that suffered.
Dinosaurs were thriving before asteroid strike that wiped them out
Dinosaurs were unaffected by long-term climate changes and flourished before their sudden demise by asteroid strike.
Did volcanoes kill the dinosaurs? New evidence points to 'maybe.'
Princeton geoscientists Blair Schoene and Gerta Keller led an international team of researchers who have assembled the first high-resolution timeline for the massive eruptions in India's Deccan Traps, determining that the largest eruption pulse occurred less than 100,000 years before the mass extinction that killed the (non-avian) dinosaurs.
Want to learn about dinosaurs? Pick up some Louisiana roadkill
Scientists are able to learn about an animal's ecosystem by studying the chemical makeup of its body, whether the animal died recently or millions of years ago.
How did alvarezsaurian dinosaurs evolve monodactyl hand?
An international research team led by XU Xing from the Institute of Vertebrate Palaeontology and Palaeoanthropology announced the discovery of two new Chinese dinosaurs: Bannykus and Xiyunykus, in the journal Current Biology, which shed light on how alvarezsaurian dinosaurs reduced and lost their fingers.
Those fragrances you enjoy? Dinosaurs liked them first
The compounds behind the perfumes and colognes you enjoy have been eliciting olfactory excitement since dinosaurs walked the Earth amid the first appearance of flowering plants, new research reveals.
More Dinosaurs News and Dinosaurs Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#555 Coronavirus
It's everywhere, and it felt disingenuous for us here at Science for the People to avoid it, so here is our episode on Coronavirus. It's ok to give this one a skip if this isn't what you want to listen to right now. Check out the links below for other great podcasts mentioned in the intro. Host Rachelle Saunders gets us up to date on what the Coronavirus is, how it spreads, and what we know and don't know with Dr Jason Kindrachuk, Assistant Professor in the Department of Medical Microbiology and infectious diseases at the University of Manitoba. And...
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at Radiolab.org/donate.