Nav: Home

Colloidal gel properties under the microscope

May 31, 2019

Tokyo, Japan - The term colloidal gel might not be one that is immediately familiar to everybody. However, most people come into contact with these materials every day. Many cosmetics, pharmaceuticals, food products and even building materials are made up of colloidal gels, and as a result these materials are widely studied. However, to date, research methods have not been capable of following the complete gelation process. Now, researchers at The University of Tokyo have used confocal microscopy to analyze the process in real time with single particle resolution. Their findings are published in Science Advances.

Colloidal gels consist of two phases that are intertwined with one another: a solid particle network and a liquid solvent. The result is soft-solid materials with unique properties, including elasticity and mechanical stability, which make them attractive choices for numerous applications. Although these properties have been capitalized upon commercially, they are not completely explained by the theoretical understanding that has been acquired to date.

"Studying colloidal gels that are already formed means that the actual process of gelation remains somewhat of a black box," one of study leading authors Hideyo Tsurusawa explains. Another leading author Mathieu Leocmach continues "By establishing a method that allows us to follow the kinetics of the complete gelation process, we have gained new insight into the origins of the characteristic properties of colloidal gels. Understanding the individual stages of gelation has enabled us to demonstrate a direct link between the mechanical stability of gels and isostatic structures."

Isostatic structures are particles or clusters that experience balanced forces. The researchers found that the point in the gelation process when solidity appears corresponds to the point of isotropic percolation of isostatic structures through the gel. Their comparison of the differences in percolation behavior between low and high concentration gels suggested that the space-spanning percolation of isostatic structures are directly linked to mechanical stability.

"The real time nature and resolution of our technique have resulted in a depth of understanding that was not previously achievable," study corresponding author Hajime Tanaka explains. "We hope that the enhanced insight will be useful for researchers working to address complex mechanical and rheological issues across the wide span of colloidal gel applications."
The article, "Direct link between mechanical stability in gels and percolation of isostatic particles" was published in Science Advances at DOI: 10.1126/sciadv.aav6090.

About Institute of Industrial Science (IIS), the University of Tokyo

Institute of Industrial Science (IIS), the University of Tokyo is one of the largest university-attached research institutes in Japan.

More than 120 research laboratories, each headed by a faculty member, comprise IIS, with more than 1,000 members including approximately 300 staff and 700 students actively engaged in education and research. Our activities cover almost all the areas of engineering disciplines. Since its foundation in 1949, IIS has worked to bridge the huge gaps that exist between academic disciplines and real-world applications.

Institute of Industrial Science, The University of Tokyo

Related Pharmaceuticals Articles:

Safety events common for pharmaceuticals and biologics after FDA approval
Among more than 200 new pharmaceuticals and biologics approved by the US Food and Drug Administration from 2001 through 2010, nearly a third were affected by a postmarket safety event such as issuance of a boxed warning or safety communication, according to a study published by JAMA.
Algal residue -- an alternative carbon resource for pharmaceuticals and polyesters
Researchers at Tokyo Institute of Technology found that algal residue, the leftover material after extracting oil from algae for biofuel, can be used to produce key industrial chemicals.
Pharmaceuticals from a coal mine?
Digging around in the dark can sometimes lead to interesting results: in the acidic waters of an abandoned coal mine in Kentucky (USA), researchers discovered ten previously unknown microbial natural products from a strain of Streptomyces.
New Rhein concludes successful investment in Chase Pharmaceuticals via sale to Allergan
New Rhein Healthcare Investors LLC ('New Rhein'), an investment firm focused on health-care therapeutics and medical devices, today announced it has successfully concluded its investment in Chase Pharmaceuticals through the sale of this portfolio company to Allergan plc.
Solid-phase extraction of ibuprofen from pharmaceuticals
The content of active ingredients in pharmaceuticals is mostly assessed by reversed-phase HPLC.
More Pharmaceuticals News and Pharmaceuticals Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.