Nav: Home

Physicists create stable, strongly magnetized plasma jet in laboratory

May 31, 2019

When you peer into the night sky, much of what you see is plasma, a soupy amalgam of ultra-hot atomic particles. Studying plasma in the stars and various forms in outer space requires a telescope, but scientists can recreate it in the laboratory to examine it more closely.

Now, a team of scientists led by physicists Lan Gao of the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) and Edison Liang of Rice University, has for the first time created a particular form of coherent and magnetized plasma jet that could deepen the understanding of the workings of much larger jets that stream from newborn stars and possibly black holes -- stellar objects so massive that they trap light and warp both space and time.

"We are now creating stable, supersonic, and strongly magnetized plasma jets in a laboratory that might allow us to study astrophysical objects light years away," said astrophysicist Liang, co-author of the paper reporting the results in the Astrophysical Journal Letters.

The team created the jets using the OMEGA Laser Facility at the University of Rochester's Laboratory for Laser Energetics (LLE). The researchers aimed 20 of OMEGA's individual laser beams into a ring-shaped area on a plastic target. Each laser created a tiny puff of plasma; as the puffs expanded, they put pressure on the inner region of the ring. That pressure then squeezed out a plasma jet reaching over four millimeters in length and created a magnetic field that had a strength of over 100 tesla.

"This is the first step in studying plasma jets in a laboratory," said Gao, who was the primary author of the paper. "I'm excited because we not only created a jet. We also successfully used advanced diagnostics on OMEGA to confirm the jet's formation and characterize its properties."

The diagnostic tools, developed with teams from LLE and the Massachusetts Institute of Technology (MIT), measured the jet's density, temperature, length, how well it stayed together as it grew through space, and the shape of the magnetic field around it. The measurements help scientists determine how the laboratory phenomena compare to jets in outer space. They also provide a baseline that scientists can tinker with to observe how the plasma behaves under different conditions.

"This is groundbreaking research because no other team has successfully launched a supersonic, narrowly beamed jet that carries such a strong magnetic field, extending to significant distances," said Liang. "This is the first time that scientists have demonstrated that the magnetic field does not just wrap around the jet, but also extends parallel to the jet's axis," he said.

The researchers hope to expand their research with larger laser facilities and investigate other types of phenomena. "The next step involves seeing whether an external magnetic field could make the jet longer and more collimated," Gao said.

"We would also like to replicate the experiment using the National Ignition Facility at Lawrence Livermore National Laboratory, which has 192 laser beams, half of which could be used to create our plasma ring. It would have a larger radius and thus produce a longer jet than that produced using OMEGA. This process would help us figure out under which conditions the plasma jet is strongest."
-end-
The team included scientists from PPPL, Rice, LLE, MIT, and the University of Chicago. The research was supported by the DOE's National Nuclear Security Administration, the National Science Foundation, and Los Alamos National Laboratory. Computer simulations were performed on the Extreme Science and Engineering Discovery Environment (XSEDE), a collaborative partnership of 19 institutions, and the Argonne Leadership Computing Facility, a DOE Office of Science user facility.

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science

DOE/Princeton Plasma Physics Laboratory

Related Magnetic Field Articles:

Understanding stars: How tornado-shaped flow in a dynamo strengthens the magnetic field
A new simulation based on the von-Kármán-Sodium (VKS) dynamo experiment takes a closer look at how the liquid vortex created by the device generates a magnetic field.
'Quartz' crystals at the Earth's core power its magnetic field
Scientists at the Earth-Life Science Institute at the Tokyo Institute of Technology report in Nature (Fen.
Brightest neutron star yet has a multipolar magnetic field
Scientists have identified a neutron star that is consuming material so fast it emits more x-rays than any other.
Confirmation of Wendelstein 7-X magnetic field
Physicist Sam Lazerson of the US Department of Energy's Princeton Plasma Physics Laboratory has teamed with German scientists to confirm that the Wendelstein 7-X fusion energy device called a stellarator in Greifswald, Germany, produces high-quality magnetic fields that are consistent with their complex design.
High-precision magnetic field sensing
Scientists have developed a highly sensitive sensor to detect tiny changes in strong magnetic fields.
Brilliant burst in space reveals universe's magnetic field
Scientists have detected the brightest fast burst of radio waves in space to date -- locating the source of the event with more precision than previous efforts.
Optical magnetic field sensor can detect signals from the nervous system
The human body is controlled by electrical impulses in the brain, the heart and nervous system.
What did Earth's ancient magnetic field look like?
New work from Carnegie's Peter Driscoll suggests Earth's ancient magnetic field was significantly different than the present day field, originating from several poles rather than the familiar two.
Just what sustains Earth's magnetic field anyway?
Earth's magnetic field shields us from deadly cosmic radiation, and without it, life as we know it could not exist here.
Ironing out the mystery of Earth's magnetic field
The Earth's magnetic field has been existing for at least 3.4 billion years thanks to the low heat conduction capability of iron in the planet's core.

Related Magnetic Field Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.