Building detailed map of human DNA will take more time and resources than previously thought, says Hutch researcher

May 31, 1999

SEATTLE - A Fred Hutchinson Cancer Research Center geneticist asserts in the June issue of Nature Genetics that building a detailed map of the human genome will take significantly more time and resources than previously estimated.

While current gene-mapping efforts target the identification of 400,000 genetic markers to help locate common disease genes, many more such signposts must be found before the map can be considered a truly useful tool for pharmaceutical research and development, says the paper's author, Dr. Leonid Kruglyak. "An essential issue yet to be settled is the required marker density for such maps," writes Kruglyak, an associate member of the Hutchinson Center's divisions of Human Biology and Public Health Sciences.

Kruglyak predicts researchers instead will need to locate at least half a million such "mile markers"along the DNA highway if geneticists are to stay on track when chasing down genes that influence characteristics such as disease susceptibility and drug response.

"People may be disappointed in my conclusion, because it implies we're going to have to work that much harder, but it is simply a prediction for what resources will actually be needed to accomplish the task ahead of us," says Kruglyak, an expert in using powerful statistical and computational tools to tease out genetic components of common "diseases of civilization" such as cancer and heart disease.

"The technology for doing this - typing potentially thousands of individuals for half a million genetic markers - really needs to be developed much further than where it is today," he says.

The publication of Kruglyak's paper comes on the heels of the establishment of the SNP Consortium, an unprecedented collaboration between industry and academia to create a finely detailed map of the human genome. Comprised of 10 of the world's largest drug companies, a major British charity and a handful of academic genetics laboratories, this nonprofit alliance, announced in April, seeks to build on and ultimately accelerate the efforts of the federally funded Human Genome Project.

While the Human Genome Project aims to assemble a common, "one-size-fits-all" map of human DNA sequence by the year 2003, the drug-company consortium plans to take the genetic decoding effort a step further. Its goal: to create a more detailed genetic blueprint that can be used by pharmaceutical companies to tailor medications to a person's unique genetic inheritance - a radical departure from today's blanket approach to drug design.

To accomplish this task, the consortium plans to locate, within the next two years, 300,000 of the estimated 2 million single-nucleotide polymorphisms, or SNPs, that pepper the human genome. SNPs (pronounced "snips") are minute, usually functionless single-letter variations within the genetic code that serve as markers, or signposts, to help locate common disease genes. The Human Genome Project, in contrast, seeks to isolate just 100,000 such markers.

While together these efforts represent a sound start for building a complete, high-density picture of the complete human DNA sequence, even more genetic markers must be found, says Kruglyak, also a professor of genetics and molecular biotechnology at the University of Washington.

But far from being pessimistic, Kruglyak views the undertaking with much enthusiasm and hope.

"Having a more finely tuned outline of the human genome in hand ultimately will shed light on what makes each person genetically unique and thus particularly vulnerable to certain diseases or immune to certain drugs," he says. Also in the Nature Genetics article, Kruglyak addresses the inherent limitations of mining so-called "isolated" human populations, such as that of Iceland, for disease genes.

Since Iceland essentially has had no immigration since the Vikings landed in the ninth century, geneticists widely presumed the DNA of its inhabitants would be relatively undisturbed, free of the genetic "static" commonly seen in more culturally diverse populations. With less background noise, it was presumed that gene hunters could more easily zero in on their prey.

"For geneticists, part of the appeal of isolated populations such as Iceland was that you might be able to get away with a much looser genetic map containing fewer SNPs, or genetic markers," he says. "However, my research shows that in regions surrounding common genetic mutations, the DNA from Iceland looks exactly the same as that from larger populations, requiring an equally dense map of SNPs to detect an association between a marker and disease."

To be truly homogenous, or free of "background noise," a population must be founded by fewer than 100 people, Kruglyak estimates. Iceland, in contrast, sprung from a migration of more than 10,000 people.

Prior to his arrival last year at the Hutchinson Center, Kruglyak spent five years as a research scientist in the laboratory of renowned geneticist Dr. Eric Lander, director of the Whitehead Institute/Massachusetts Institute of Technology Center for Genome Research in Cambridge, one of five genetic laboratories participating in the Chicago-based SNP Consortium.

While at the Whitehead, Kruglyak participated on the team that in 1995 unveiled the first detailed map of the human genome - a feat that catapulted the $1 billion, 15-year Human Genome Project ahead of schedule by at least two years. In late January, Kruglyak became one of 10 young scientists worldwide to receive a $1 million research fellowship from the St. Louis-based James S. McDonnell Foundation, established by the late aerospace research pioneer of the same name. Categories in the rigorous international competition for the James S. McDonnell Centennial Fellowship - a one-time grant that honors the 100th anniversary of McDonnell's birth - ranged from astrophysics and cosmology to human genetics. Kruglyak, one of two winners in genetics, accepted his award in April in Washington, D.C.

The Fred Hutchinson Cancer Research Center is an independent, nonprofit research institution dedicated to the development and advancement of biomedical technology to eliminate cancer and other potentially fatal diseases. Recognized internationally for its pioneering work in bone-marrow transplantation, the Center's four scientific divisions collaborate to form a unique environment for conducting basic and applied science. One of 35 National Cancer Institute-designated comprehensive cancer centers in the nation, it is the only one in the Northwest. For more information, visit the Center's Web site at www.fhcrc.org
-end-
Article in June issue of Nature Genetics also questions the much-touted value of so-called 'isolated' populations, such as that of Iceland, for mining the gene pool.

Editor's note: Dr. Kruglyak is available for interviews through Monday, May 31. To schedule an interview, contact Kristen Woodward at 206-667-5095. Photographs of Kruglyak also are available upon request. To obtain a copy of the Nature Genetics article, entitled "Prospects for Whole-Genome Linkage Disequilibrium Mapping of Common Disease Genes," please contact the journal at 212-726-9314.



Fred Hutchinson Cancer Research Center

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.