Cells re-energize to come back from the brink of death

June 01, 2007

The discovery of how some abnormal cells can avoid a biochemical program of self-destruction by increasing their energy level and repairing the damage, is giving investigators at St. Jude Children's Research Hospital insights into a key strategy cancer cells use to survive and thrive.

The finding offers an explanation of how abnormal cells that have cheated death once by disabling the main suicide pathway called apoptosis can also foil a backup self-destruct program, which allows them to survive and become cancerous.

The St. Jude study also suggests that a drug that disrupts a cancer cell's ability to block this backup program would allow that program to kill the cell. Such a specifically targeted drug might be more effective and less toxic than standard chemotherapy. A report on this work is in the June 1 issue of "Cell."

Apoptosis is triggered by a variety of factors, including gene mutations that can make the cell become cancerous. During apoptosis, the membrane covering the cell's mitochondria develop holes and leak a molecule called cytochrome c, which triggers the activity of enzymes called caspases. In turn, caspases trigger a series of events that kills the cell. Mitochondria are tiny structures that act as power plants to supply the cell with energy, but also hold the keys to the cells' life and death.

The process by which the membranes develop holes--mitochondrial outer membrane permeability (MOMP)--is often the "point of no return" for self-destruction, said Douglas Green, Ph.D., chair of the St. Jude Immunology department and the study's senior author. MOMP triggers apoptosis, but if apoptosis fails because there is no caspase available, the backup program called caspase-independent cell death (CICD) takes over the process.

Previous research has shown that cells that become cancerous lack caspase and other proteins needed to support apoptosis after MOMP releases cytochrome c. But this victory over death is short-lived if CICD is activated. However, some cancerous cells not only dodge death from apoptosis by eliminating caspase activation, but they also foil CIDC. "Our study sought to understand how a cancer cell without caspase activation bypasses CICD as well," Green said.

The St. Jude team discovered that a cell that lacks caspase activation and cannot undergo apoptosis increases the levels of an enzyme called GAPDH in order to counteract CICD. GAPDH appears to prevent CICD by supporting the functioning of the mitochondria and triggering the activity of certain genes that prevent or repair cell damage. The findings also suggest that the increase in GAPDH provides energy to increase autophagy--the process by which a cell "chews up" debris and broken components, such as damaged mitochondria. After disposing of damaged mitochondria the cell can replace these vital components.

"We found that in the absence of caspase activation, cells that avoided CICD took about a week or so to begin multiplying again," Green said. "This might represent the time it takes for the cell to restore enough mitochondria to allow the cell to function normally."

The discovery that GAPDH appears to save cells from CICD suggests that blocking this enzyme would kill abnormal cells that lack caspase activation and cannot undergo apoptosis. That strategy would be the basis of novel anti-cancer drugs.

The St. Jude study was conducted in culture dishes in which normal cells were exposed to cancer drugs or other agents that triggered apoptosis. The researchers then blocked apoptosis in order to study CICD. "The GAPDH response appears to represent a basic, reproducible event. But in order to verify that hypothesis, we'll need to study it in the body, especially as we try to develop ways to force cancer cells without caspase to undergo CICD," Green said. "Our goal is to find better ways to treat these diseases."
-end-
Other authors of this study include Anna Colell (Institut d'Investigacions Biomediques de Barcelona, Spain); Jean-Ehrland Ricci (Universite de Nice Sophia, Antipolis, France); Stephen Tait, Sandra Milasta, Lisa Bouchier-Hayes, Patrick Fitzgerald and Helen M. Beere (St. Jude); Ana Guio-Carrion, Cindy Wei Li and Donald D. Newmeyer (La Jolla Institute for Allergy and Immunology, San Diego); Nigel J. Waterhouse (Peter MacCallum Cancer Centre, Melbourne, Australia); and Bernard Mari and Pascal Barbry (Institute de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, France).

This work was supported in part by the National Institutes of Health (DRG); Association pour la Recherche Contre le Cancer; Fondation pour la Recherche Médicale grants (JER); and Plan Nacional I+D+I grant (AC). AC received a fellowship from the Secretaria de Estado de Universidades e Investigacion of Spain.

St. Jude Children's Research Hospital:

St. Jude Children's Research Hospital is internationally recognized for its pioneering work in finding cures and saving children with cancer and other catastrophic diseases. Founded by late entertainer Danny Thomas and based in Memphis, Tenn., St. Jude freely shares its discoveries with scientific and medical communities around the world. No family ever pays for treatments not covered by insurance, and families without insurance are never asked to pay. St. Jude is financially supported by ALSAC, its fundraising organization.

For more information, please visit:http://www.stjude.org

St. Jude Children's Research Hospital

Related Mitochondria Articles from Brightsurf:

Researchers improve neuronal reprogramming by manipulating mitochondria
Researchers at Helmholtz Zentrum M√ľnchen and Ludwig Maximilians University Munich (LMU) have identified a hurdle towards an efficient conversion: the cell metabolism.

Inside mitochondria and their fascinating genome
EPFL scientists have observed -- for the first time in living cells -- the way mitochondria distribute their transcriptome throughout the cell, and it involves RNA granules that turn out to be highly fluid.

'Cheater mitochondria' may profit from cellular stress coping mechanisms
Cheating mitochondria may take advantage of cellular mechanisms for coping with food scarcity in a simple worm to persist, even though this can reduce the worm's wellbeing.

A ribosome odyssey in mitochondria
The ciliate mitoribosome structure provides new insights into the diversity of translation and its evolution.

Fireflies shed light on the function of mitochondria
By making mice bioluminescent, EPFL scientists have found a way to monitor the activity of mitochondria in living organisms.

First successful delivery of mitochondria to liver cells in animals
This experiment marks the first time researchers have ever successfully introduced mitochondria into specific cells in living animals.

Lack of mitochondria causes severe disease in children
Researchers at Karolinska Institutet in Sweden have discovered that excessive degradation of the power plants of our cells plays an important role in the onset of mitochondrial disease in children.

Unexpected insights into the dynamic structure of mitochondria
As power plants and energy stores, mitochondria are essential components of almost all cells in plants, fungi and animals.

Mitochondria are the 'canary in the coal mine' for cellular stress
Mitochondria, tiny structures present in most cells, are known for their energy-generating machinery.

Master regulator in mitochondria is critical for muscle function and repair
New study identifies how loss of mitochondrial protein MICU1 disrupts calcium balance and causes muscle atrophy and weakness.

Read More: Mitochondria News and Mitochondria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.