Nav: Home

Software turns webcams into eye-trackers

June 01, 2016

PROVIDENCE, R.I. [Brown University] --New software created by Brown University computer scientists could help website owners and developers easily determine what parts of a page are grabbing a user's eye.

The software, called WebGazer.js, turns integrated computer webcams into eye-trackers that can infer where on a webpage a user is looking. The software can be added to any website with just a few lines of code and runs on the user's browser. The user's permission is required to access the webcam, and no video is shared. Only the location of the user's gaze is reported back to the website in real time.

"We see this as a democratization of eye-tracking," said Alexandra Papoutsaki, a Brown University graduate student who led the development of the software. "Anyone can add WebGazer to their site and get a much richer set of analytics compared to just tracking clicks or cursor movements."

Papoutsaki and her colleagues will present a paper describing the software in July at the International Joint Conference on Artificial Intelligence. The software code is freely available to anyone who wants it at http://webgazer.cs.brown.edu/.

The use of eye tracking for web analytics isn't new, but such studies nearly always require standalone eye-tracking devices that often cost tens of thousands of dollars. The studies are generally done in a lab setting, with users forced to hold their heads a certain distance from a monitor or wear a headset.

"We're using the webcams that are already integrated in users' computers, which eliminates the cost factor," Papoutsaki said. "And it's more naturalistic in the sense that we observe people in the real environment instead of in a lab setting."

When the code is embedded on a website, it prompts users to give permission to access their webcams. Once permission is given, the software employs a face-detection library to locate the user's face and eyes. The system converts the image to black and white, which enables it to distinguish the sclera (the whites of the eyes) from the iris.

Having located the iris, the system employs a statistical model that is calibrated by the user's clicks and cursor movements. The model assumes that a user looks at the spot where they click, so each click tells the model what the eye looks like when it's viewing a particular spot. It takes about three clicks to get a reasonable calibration, after which the model can accurately infer the location of the user's gaze in real time.

Papoutsaki and her colleagues performed a series of experiments to evaluate the system. They showed that it can infer gaze location within 100 to 200 screen pixels. "That's not as accurate as specialized commercial eye trackers, but it still gives you a very good estimation of where the user is looking," Papoutsaki said.

She and her colleagues envision this as a tool that can help website owners to prioritize popular or eye-catching content, optimize a page's usability, as well as place and price advertising space.

A newspaper website, for example, "could learn what articles you read on a page, how long you read them and in what order," said Jeff Huang, an assistant professor of computer science at Brown and co-developer of the software. Another application, the researchers said, might be evaluating how students use content in massive open online courses (MOOCs).

As the team continues to refine the software, they envision broader potential applications down the road -- perhaps in eye-controlled gaming or helping people with physical impairments to navigate the web.

"Our purpose here was to give the tool both to the scientific community and to developers and owners of websites and see how they choose to adopt it," Papoutsaki said.
-end-


Brown University

Related Software Articles:

Software of autonomous driving systems
Researchers at TU Graz and AVL focus on software systems of autonomous driving systems.
New software supports decision-making for breeding
Researchers at the University of Göttingen have developed an innovative software program for the simulation of breeding programmes.
Software updates slowing you down?
We've all shared the frustration -- software updates that are intended to make our applications run faster inadvertently end up doing just the opposite.
Where is George? Ask this software to look at the crowd
Idtracker.ai is a mix of conventional algorithms and artificial intelligence developed at the Champalimaud Centre for the Unknown.
Research finds serious problems with forensic software
New research finds significant flaws in recently released forensic software designed to assess the age of individuals based on their skeletal remains.
Beta of Neurodata Without Borders software now available
Neuroscientists can now explore a beta version of the new Neurodata Without Borders: Neurophysiology (NWB:N 2.0) software and offer input to developers before it is fully released next year.
New software speeds origami structure designs
Researchers at Georgia Institute of Technology have developed a new computer-aided approach that streamlines the design process for origami-based structures, making it easier for engineers and scientists to conceptualize new ideas graphically while simultaneously generating the underlying mathematical data needed to build the structure in the real world.
International competition benchmarks metagenomics software
Communities of bacteria live everywhere: inside our bodies, on our bodies and all around us.
Preventing software from causing injury
Workplace injuries don't just come from lifting heavy things or falling off a ladder.
New software automates brain imaging
When humans and animals learn and form memories, the physical structures of their brain cells change.
More Software News and Software Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.