Nav: Home

Hydraulic fracturing chemical spills on agricultural land need scrutiny

June 01, 2016

Hydraulic fracturing, a widely used method for extracting oil and gas from otherwise impenetrable shale and rock formations, involves not only underground injections composed mostly of water, but also a mixture of chemical additives. These chemicals range from toxic biocides and surfactants, to corrosion inhibitors and slicking agents, and many are also used by other industries.

A Colorado State University research team desired a deeper understanding of the fate of these chemicals when they are spilled accidentally during either transportation or production in oil and gas operations. These spills, especially in Colorado, often take place on or near agricultural lands.

The researchers set out to discover whether the degradation of these chemicals in agricultural soil are affected by co-contamination. The team consisted of Thomas Borch, a professor in the Department of Soil and Crop Sciences in the College of Agricultural Sciences, with joint appointments in civil and environmental engineering and chemistry; Jens Blotevogel, a research assistant professor in civil and environmental engineering; and their graduate student Molly McLaughlin.

Their results are online in the journal Environmental Science and Technology, published by the American Chemical Society (ACS).

In the paper, Borch, Blotevogel and McLaughlin cite 838 total hydraulic fracturing fluid spills in Colorado, reported to the Colorado Oil and Gas Conservation Commission in 2014. These spills only include those larger than five barrels of fluid when they happen within a well pad, and larger than one barrel when outside a well pad.

For their proof-of-concept experiments, the researchers used reactors to simulate chemical reactions and biodegradation of hydraulic fracturing additives spilled on agricultural soil. Later, they plan to test their conclusions at actual spill sites.

They tested three well-known organic chemicals: polyethylene glycol (PEG), a commonly used surfactant; glutaraldehyde, a biocide that prevents pipe corrosion from microbial activity; and polyacrylamide, a slicking agent that allows hydraulic fracturing fluid to better penetrate shale. They looked at how these chemicals interact both with each other, and with naturally occurring salts underground.

They found that the PEG (surfactant) by itself completely biodegrades within about 70 days, but that in combination with glutaraldehyde (biocide), the PEG stayed in the soil much longer. That biodegradation was fully inhibited by salt concentrations typical for oil and gas extraction activities.

"Our motivation for doing this is because the chemicals often come up as mixtures," Borch said. "While you may see biodegradation of a surfactant under normal circumstances, if you spill that together with a biocide that kills bacteria, maybe you don't break that surfactant down as quickly. And that's exactly what we see. If chemicals don't degrade as quickly, it gives them more time to be transported to groundwater or sensitive surface water."

They also looked at the degradation cycle of glutaraldehyde (biocide), which occurred within about two months. While polyacrylamide stuck around in the soil for six months, it covalently bonded with the glutaraldehyde, effectively lowering the toxicity of the biocide.

The bottom line is that more science is needed around how spilled chemicals interact with each other and the underground chemical environment - and this applies not just to oil and gas extraction, but to many industrial processes, the researchers say. Such follow-up studies could lead to better understanding of the potential uptake of pollutants in crops, or contamination of groundwater and surface water, with the ultimate goal of helping improve human health risk assessment of spills.

"We cannot say our findings are valid for all the different chemicals used worldwide in hydraulic fracturing," Blotevogel said. "There are probably 1,000 different chemicals used globally, and they all behave very differently with respect to how they are broken down."

Borch and Blotevogel previously published a comprehensive review of the biocide toxicity in hydraulic fracturing fluids and have worked together for almost nine years. The ES&T study was supported primarily by CSU's School of Global and Environmental Sustainability (SoGES), a grant from the CSU Water Center, and by the Borch-Hoppess Fund for Environmental Contaminant Research.
-end-


Colorado State University

Related Hydraulic Fracturing Articles:

What factors influence the likelihood of fracking-related seismicity in Oklahoma?
The depth of a hydraulic fracturing well in Oklahoma, among other factors, increases the probability that fracking will lead to earthquake activity, according to a new report in the Bulletin of the Seismological Society of America.
Skoltech scientists use ML to optimize hydraulic fracturing design for oil wells
Skoltech researchers and their industry colleagues have created a data-driven model that can forecast the production from an oil well stimulated by multistage fracturing technology.
Fracking chemical may interfere with male sex hormone receptor
A chemical used in hydraulic fracturing, commonly called fracking, has the potential to interfere with reproductive hormones in men, according to research accepted for presentation at ENDO 2020, the Endocrine Society's annual meeting, and publication in a special supplemental section of the Journal of the Endocrine Society.
Paper: Disposal of wastewater from hydraulic fracturing poses dangers to drivers
A new paper co-written by Yilan Xu, a professor of agricultural and consumer economics at the University of Illinois at Urbana-Champaign, shows that the growing traffic burden in shale energy boomtowns from trucks hauling wastewater to disposal sites resulted in a surge of road fatalities and severe accidents.
Water reuse could be key for future of hydraulic fracturing
Enough water will come from the ground as a byproduct of oil production from unconventional reservoirs during the coming decades to theoretically counter the need to use fresh water for hydraulic fracturing operations in many of the nation's large oil-producing areas.
UTA study examines potential sources of groundwater contamination in private wells
A study led by environmental researchers at The University of Texas at Arlington suggests a disconnect between the perception of groundwater contamination and the extent to which that contamination is attributable to oil and natural gas extraction.
Swapping water for CO2 could make fracking greener and more effective
Scientists at the Chinese Academy of Sciences and China University of Petroleum (Beijing) have demonstrated that CO2 may make a better hydraulic fracturing (fracking) fluid than water.
Federal research significant in environmental rule-making
Federally-sponsored science plays a more significant role in bringing together stakeholders and facilitating environmental governance debates than all other types of research, according to an international team of researchers.
Studies link earthquakes to fracking in the central and eastern US
Small earthquakes in Ohio, Pennsylvania, West Virginia, Oklahoma and Texas can be linked to hydraulic fracturing wells in those regions, according to researchers speaking at the SSA 2019 Annual Meeting.
Location of wastewater disposal drives induced seismicity at US oil sites
The depth of the rock layer that serves as the disposal site for wastewater produced during unconventional oil extraction plays a significant role in whether that disposal triggers earthquakes in the US, according to a new study that takes a broad look at the issue.
More Hydraulic Fracturing News and Hydraulic Fracturing Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.