Nav: Home

Ironing out the mystery of Earth's magnetic field

June 01, 2016

The earth's magnetic field has been existing for at least 3.4 billion years thanks to the low heat conduction capability of iron in the planet's core. This is the result of the first direct measurement of the thermal conductivity of iron at pressures and temperatures corresponding to planetary core conditions. DESY scientist Zuzana Konôpková and her colleagues present their study in the scientific journal Nature. The results could resolve a recent debate about the so-called geodynamo paradox.

The geodynamo generating the earth's magnetic field is fed on convection in the iron-rich outer core of our planet that stirs the molten, electrically conducting material like boiling water in a pot. Combined with the rotation of the earth, a dynamo effect sets in, giving rise to the geomagnetic field. "The magnetic field shields us from harmful high-energy particles from space, the so-called cosmic radiation, and its existence is one of the things that make our planet habitable," explains Konôpková.

The strength of the convection in the outer core depends on the heat transferred from the core to the earth's mantle and on the thermal conductivity of iron in the outer core. If a lot of heat is transferred via conduction, there is not much energy left to drive convection - and with it the earths's dynamo. Low thermal conductivity implies stronger convection, making the geodynamo more likely to operate. "We measured the thermal conductivity of iron because we wanted to know what the energy budget of the core is to drive the dynamo," says Konôpková. "Generation and maintenance of our planet's magnetic field strongly depend on the thermal dynamics of the core."

Measurements of thermal conductivity at relevant conditions proved to be difficult in the past. Recent theoretical calculations postulated a quite high thermal conductivity of up to 150 Watts per meter per Kelvin (150 W/m/K) of iron in the earth's core. Such a high thermal conductivity would reduce the chances of the geodynamo starting up.

According to numerical models, a high thermal conductivity would have allowed the geodynamo effect to be supported only rather recently in the earth's history, about one billion years ago or so. However, the existence of the geomagnetic field can be traced back at least 3.4 billion years. This geodynamo paradox has puzzled scientists. "There's been a fierce debate among geophysicists because with such a large thermal conductivity, it becomes hard to explain the history of the geomagnetic field which is recorded in ancient rocks", says Konôpková.

The physicists used a specially designed pressure cell that allows to compress samples between two diamond anvils and to heat them simultaneously with infrared lasers, shining right through the diamonds. Konôpková teamed up with Stewart McWilliams and Natalia Gómez-Pérez from the University of Edinburgh and Alexander Goncharov from the Carnegie Institution in Washington DC to measure the thermal conductivity of iron at high pressure and high temperature conditions in Goncharov's lab.

"We compressed a thin foil of iron in the diamond anvil cell to up to 130 Giga-Pascals, which is more than a million times the atmospheric pressure and corresponds to approximately the pressure at the earth's core-mantle boundary," explains Konôpková. "Simultaneously we heated up the foil to up to 2700 degrees Celsius with two continuous infrared laser beams, shining through the diamonds. Finally, we used a third laser to send a low power pulse to one side of the foil to create a thermal perturbation and measured the temperature evolution from both sides of the foil with an optical streak camera." This way the scientists could watch the heat pulse travelling through the iron.

These measurements were conducted at several pressures and temperatures to cover different conditions of planetary interiors and to obtain a systematic investigation of the thermal conductivity as a function of pressure and temperature. "Our results strongly contradict the theoretical calculations," reports Konôpková. "We found very low values of thermal conductivity, about 18 to 44 Watts per meter per Kelvin, which can resolve the paradox and make the geodynamo operable since the early ages of the earth."
Deutsches Elektronen-Synchrotron DESY is the leading German accelerator centre and one of the leading in the world. DESY is a member of the Helmholtz Association and receives its funding from the German Federal Ministry of Education and Research (BMBF) (90 per cent) and the German federal states of Hamburg and Brandenburg (10 per cent). At its locations in Hamburg and Zeuthen near Berlin, DESY develops, builds and operates large particle accelerators, and uses them to investigate the structure of matter. DESY's combination of photon science and particle physics is unique in Europe.


Direct measurement of thermal conductivity in solid iron at planetary core conditions; Zuzana Konôpková, R. Stewart McWilliams, Natalia Gómez-Pérez, Alexander F. Goncharov
Nature, 2016; DOI: 10.1038/nature18009

Deutsches Elektronen-Synchrotron DESY

Related Magnetic Field Articles:

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.
Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.
New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.
Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
A new rare metals alloy can change shape in the magnetic field
Scientists developed multifunctional metal alloys that emit and absorb heat at the same time and change their size and volume under the influence of a magnetic field.
Physicists studied the influence of magnetic field on thin film structures
A team of scientists from Immanuel Kant Baltic Federal University together with their colleagues from Russia, Japan, and Australia studied the influence of inhomogeneity of magnetic field applied during the fabrication process of thin-film structures made from nickel-iron and iridium-manganese alloys, on their properties.
'Magnetic topological insulator' makes its own magnetic field
A team of U.S. and Korean physicists has found the first evidence of a two-dimensional material that can become a magnetic topological insulator even when it is not placed in a magnetic field.
Scientists develop a new way to remotely measure Earth's magnetic field
By zapping a layer of meteor residue in the atmosphere with ground-based lasers, scientists in the US, Canada and Europe get a new view of Earth's magnetic field.
More Magnetic Field News and Magnetic Field Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.