Nav: Home

Ironing out the mystery of Earth's magnetic field

June 01, 2016

The earth's magnetic field has been existing for at least 3.4 billion years thanks to the low heat conduction capability of iron in the planet's core. This is the result of the first direct measurement of the thermal conductivity of iron at pressures and temperatures corresponding to planetary core conditions. DESY scientist Zuzana Konôpková and her colleagues present their study in the scientific journal Nature. The results could resolve a recent debate about the so-called geodynamo paradox.

The geodynamo generating the earth's magnetic field is fed on convection in the iron-rich outer core of our planet that stirs the molten, electrically conducting material like boiling water in a pot. Combined with the rotation of the earth, a dynamo effect sets in, giving rise to the geomagnetic field. "The magnetic field shields us from harmful high-energy particles from space, the so-called cosmic radiation, and its existence is one of the things that make our planet habitable," explains Konôpková.

The strength of the convection in the outer core depends on the heat transferred from the core to the earth's mantle and on the thermal conductivity of iron in the outer core. If a lot of heat is transferred via conduction, there is not much energy left to drive convection - and with it the earths's dynamo. Low thermal conductivity implies stronger convection, making the geodynamo more likely to operate. "We measured the thermal conductivity of iron because we wanted to know what the energy budget of the core is to drive the dynamo," says Konôpková. "Generation and maintenance of our planet's magnetic field strongly depend on the thermal dynamics of the core."

Measurements of thermal conductivity at relevant conditions proved to be difficult in the past. Recent theoretical calculations postulated a quite high thermal conductivity of up to 150 Watts per meter per Kelvin (150 W/m/K) of iron in the earth's core. Such a high thermal conductivity would reduce the chances of the geodynamo starting up.

According to numerical models, a high thermal conductivity would have allowed the geodynamo effect to be supported only rather recently in the earth's history, about one billion years ago or so. However, the existence of the geomagnetic field can be traced back at least 3.4 billion years. This geodynamo paradox has puzzled scientists. "There's been a fierce debate among geophysicists because with such a large thermal conductivity, it becomes hard to explain the history of the geomagnetic field which is recorded in ancient rocks", says Konôpková.

The physicists used a specially designed pressure cell that allows to compress samples between two diamond anvils and to heat them simultaneously with infrared lasers, shining right through the diamonds. Konôpková teamed up with Stewart McWilliams and Natalia Gómez-Pérez from the University of Edinburgh and Alexander Goncharov from the Carnegie Institution in Washington DC to measure the thermal conductivity of iron at high pressure and high temperature conditions in Goncharov's lab.

"We compressed a thin foil of iron in the diamond anvil cell to up to 130 Giga-Pascals, which is more than a million times the atmospheric pressure and corresponds to approximately the pressure at the earth's core-mantle boundary," explains Konôpková. "Simultaneously we heated up the foil to up to 2700 degrees Celsius with two continuous infrared laser beams, shining through the diamonds. Finally, we used a third laser to send a low power pulse to one side of the foil to create a thermal perturbation and measured the temperature evolution from both sides of the foil with an optical streak camera." This way the scientists could watch the heat pulse travelling through the iron.

These measurements were conducted at several pressures and temperatures to cover different conditions of planetary interiors and to obtain a systematic investigation of the thermal conductivity as a function of pressure and temperature. "Our results strongly contradict the theoretical calculations," reports Konôpková. "We found very low values of thermal conductivity, about 18 to 44 Watts per meter per Kelvin, which can resolve the paradox and make the geodynamo operable since the early ages of the earth."
Deutsches Elektronen-Synchrotron DESY is the leading German accelerator centre and one of the leading in the world. DESY is a member of the Helmholtz Association and receives its funding from the German Federal Ministry of Education and Research (BMBF) (90 per cent) and the German federal states of Hamburg and Brandenburg (10 per cent). At its locations in Hamburg and Zeuthen near Berlin, DESY develops, builds and operates large particle accelerators, and uses them to investigate the structure of matter. DESY's combination of photon science and particle physics is unique in Europe.


Direct measurement of thermal conductivity in solid iron at planetary core conditions; Zuzana Konôpková, R. Stewart McWilliams, Natalia Gómez-Pérez, Alexander F. Goncharov
Nature, 2016; DOI: 10.1038/nature18009

Deutsches Elektronen-Synchrotron DESY

Related Magnetic Field Articles:

Understanding stars: How tornado-shaped flow in a dynamo strengthens the magnetic field
A new simulation based on the von-Kármán-Sodium (VKS) dynamo experiment takes a closer look at how the liquid vortex created by the device generates a magnetic field.
'Quartz' crystals at the Earth's core power its magnetic field
Scientists at the Earth-Life Science Institute at the Tokyo Institute of Technology report in Nature (Fen.
Brightest neutron star yet has a multipolar magnetic field
Scientists have identified a neutron star that is consuming material so fast it emits more x-rays than any other.
Confirmation of Wendelstein 7-X magnetic field
Physicist Sam Lazerson of the US Department of Energy's Princeton Plasma Physics Laboratory has teamed with German scientists to confirm that the Wendelstein 7-X fusion energy device called a stellarator in Greifswald, Germany, produces high-quality magnetic fields that are consistent with their complex design.
High-precision magnetic field sensing
Scientists have developed a highly sensitive sensor to detect tiny changes in strong magnetic fields.
Brilliant burst in space reveals universe's magnetic field
Scientists have detected the brightest fast burst of radio waves in space to date -- locating the source of the event with more precision than previous efforts.
Optical magnetic field sensor can detect signals from the nervous system
The human body is controlled by electrical impulses in the brain, the heart and nervous system.
What did Earth's ancient magnetic field look like?
New work from Carnegie's Peter Driscoll suggests Earth's ancient magnetic field was significantly different than the present day field, originating from several poles rather than the familiar two.
Just what sustains Earth's magnetic field anyway?
Earth's magnetic field shields us from deadly cosmic radiation, and without it, life as we know it could not exist here.
Ironing out the mystery of Earth's magnetic field
The Earth's magnetic field has been existing for at least 3.4 billion years thanks to the low heat conduction capability of iron in the planet's core.

Related Magnetic Field Reading:

Know Your Magnetic Field: Change Your Thinking, Change Your Life.
by William E. Gray (Author)

Earth's Magnetic Field Secrets: An Illusion Mixed With Reality
by Dennis Brooks (Author)

Magnetic Fields: Expanding American Abstraction, 1960s to Today
by Valerie Cassel Oliver (Author), Lowery Stokes Sims (Author), Erin Dziedzic (Editor), Melissa Messina (Editor)

NOW 2 kNOW Electro-Magnetic Fields
by Dr. T G D'Alberto (Author)

Magnetic Field(s)
by Ron Loewinsohn (Author), Steve Erickson (Preface)

Magnetic Fields: A Comprehensive Theoretical Treatise for Practical Use
by Heinz E. Knoepfel (Author)

The Magnetic Fields
by André Breton (Author), Philippe Soupault (Author), David Gascoyne (Translator)

Magnetic Fields in the Solar System: Planets, Moons and Solar Wind Interactions (Astrophysics and Space Science Library)
by Hermann Lühr (Editor), Johannes Wicht (Editor), Stuart A. Gilder (Editor), Matthias Holschneider (Editor)

Power Tools for Health: How Pulsed Magnetic Fields (Pemfs) Help You
by Msc William Pawluk MD (Author), Caitlin Layne (Author)

Magnetic Fields' 69 Love Songs: A Field Guide (33 1/3)
by LD Beghtol (Author), Ken Emerson (Introduction)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Dying Well
Is there a way to talk about death candidly, without fear ... and even with humor? How can we best prepare for it with those we love? This hour, TED speakers explore the beauty of life ... and death. Guests include lawyer Jason Rosenthal, humorist Emily Levine, banker and travel blogger Michelle Knox, mortician Caitlin Doughty, and entrepreneur Lux Narayan.
Now Playing: Science for the People

#491 Frankenstein LIVES
Two hundred years ago, Mary Shelley gave us a legendary monster, shaping science fiction for good. Thanks to her, the name of Frankenstein is now famous world-wide. But who was the real monster here? The creation? Or the scientist that put him together? Tune in to a live show from Dragon Con 2018 in Atlanta, as we breakdown the science of Frankenstein, complete with grave robbing and rivers of maggots. Featuring Tina Saey, Lucas Hernandez, Travor Valle, and Nancy Miorelli. Moderated by our own Bethany Brookshire. Related links: Scientists successfully transplant lab-grown lungs into pigs, by Maria Temming on Science...