Nav: Home

PROSPECT experiment's search for sterile neutrinos garners $3 million DOE grant

June 01, 2016

UPTON, NY - Buoyed by a $3 million federal grant, an experiment led by Yale University with partners from four U.S. Department of Energy (DOE) national laboratories, including Brookhaven National Laboratory, and 10 universities will explore key questions about elusive particles called neutrinos-and potentially improve the way we monitor and safeguard nuclear reactors in the process.

The grant from the DOE Office of Science (HEP) will be used to build a first-of-its-kind, short-distance neutrino detection device for the Precision Oscillation and Spectrum Experiment (PROSPECT). The detection instrument will be constructed at Yale's newly renovated Wright Laboratory and later be deployed at the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory in Tennessee. The PROSPECT experiment has been in development for more than three years.

"It's an excellent marriage of fundamental science and potential applications," said Karsten Heeger, a Yale physicist, director of Wright Lab, and principal investigator for PROSPECT. "We want to better understand the emission of neutrinos from a reactor and study the fundamental properties of elementary particles."

A great deal of scientific research is currently focused on neutrinos, which are subatomic particles that move through the universe with almost no mass and no electrical charge-making them incredibly difficult to detect. Yet their properties and behavior may hold answers to fundamental questions about the nature of matter in the universe.

One such property is oscillation-neutrinos' ability to change among three known types, or "flavors." The discovery of this process, in 1998, was recognized with the 2015 Nobel Prize in physics and the 2016 Breakthrough Prize. Part of its significance comes from the glimpse it gives scientists into the possible existence of matter beyond the parameters of the Standard Model of Particle Physics.

One way scientists are studying neutrino oscillation is by detecting neutrinos created within nuclear reactors, such as the Daya Bay Nuclear Power Plant in China. The Daya Bay experiment recently found that fewer neutrinos were being emitted than physicists had predicted. PROSPECT, by moving closer to a reactor core, will try to find out if the deficit is real or a result of the calculation.

"By going very close to a research reactor-less than 10 meters from the reactor core-PROSPECT will have unparalleled sensitivity to study the energy distribution of neutrinos as they leave the reactor," Heeger said.

One explanation for the apparent neutrino deficit is the possible existence of a fourth type of neutrino known as a "sterile" neutrino. The interplay of the three known neutrino types and a sterile neutrino could result in a unique oscillatory pattern in the observed rate of neutrinos in the PROSPECT detector. Sterile neutrinos would represent a new form of matter.

Yet the apparent deficit might also be explained by shortcomings in the model used to predict reactor neutrino abundances. For example, the fission cross-sections that lead to neutrino emission may not be that well known. A major goal of PROSPECT moving forward will be to probe these questions further.

"Previous neutrino detectors have gone deep underground, to reduce backgrounds," said PROSPECT co-spokesperson H. Pieter Mumm, of the National Institute of Standards and Technology (NIST). "PROSPECT will, for the first time, make a precision measurement of reactor antineutrinos with a detector operating at the Earth's surface, something never before accomplished. Such a demonstration could open up new opportunities for neutrino physics and nuclear safeguards."

PROSPECT developed a detector capable of surface operation to be able to perform the experiment at the existing reactor facility at Oak Ridge. Successful operation of a relatively compact neutrino detector on the surface would demonstrate a way to remotely monitor nuclear reactors via the detected neutrino flux.

"PROSPECT represents almost four years of dedicated research and development by our team of national laboratories and universities," said Nathaniel Bowden, co-spokesperson for PROSPECT and a physicist at Lawrence Livermore National Laboratory.

Brookhaven Lab chemists Minfang Yeh and Richard Rosero, working with scientists at NIST, have been involved in developing the liquid scintillator-a material that emits light in response to interactions with subatomic particles-that will fill the PROSPECT detector. This liquid contains an isotope of lithium that exists in relatively low abundance in nature and is readily able to absorb neutrons produced by the antineutrino interaction. This excited lithium nucleus then decays to additional products that produce a unique signature in the scintillator, allowing scientists to tease out the signals produced by neutrinos from background particles entering the detector.

"We were able to produce liquid scintillator containing enriched lithium, something that has not been done before, thanks to our extensive experience in scintillator development in neutrino experiments," said Yeh, who leads the neutrino and nuclear chemistry group started by late Brookhaven chemist and Nobel Laureate Raymond Davis, Jr. (Davis received the 2002 Nobel Prize in Physics for the very first radiochemical solar neutrino experiment, which triggered experiments that led to the discovery of neutrino oscillations. This group also contributed to the liquid-filled detectors used by the Sudbury Neutrino Observatory and Daya Bay neutrino experiments.)

Meanwhile, Brookhaven physicists David Jaffe, Chao Zhang, and Milind Diwan, and engineers Rahul Sharma and Jeffrey Dolph developed a concept for modular, compact shielding for PROSPECT's central detector to reduce background signals created by cosmic rays. The design is based on test shielding the Brookhaven team developed for a prototype detector at HFIR.Sharma and Dolph also designed a pallet system that uses a thin film of air to reduce friction when the scientists want to move the detector. This low-profile air pallet will allow the scientists to easily vary the detector's distance from the reactor.

"Since neutrino oscillation shows up as a modulation in the neutrino detection rate as a function of neutrino energy and neutrino flight distance, the ability to move the detector to different flight distances will significantly enhance the sensitivity of PROSPECT to possible sterile neutrinos that have been hinted at by previous experiments," Jaffe said.
Additional Brookhaven Lab collaborators on PROSPECT include: Lindsey Bignell, Sunej Hans, Alesha Harris, Xin Qian, and Brett Viren. Additional institutions collaborating on PROSPECT include Drexel University, Georgia Institute of Technology, Illinois Institute of Technology, Le Moyne College, the University of Tennessee-Knoxville, Temple University, the University of Waterloo, the College of William and Mary, and the University of Wisconsin-Madison.

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization. Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more at, follow Brookhaven Lab on Twitter,, or find us on Facebook,

DOE/Brookhaven National Laboratory

Related Neutrinos Articles:

Big answers from tiny particles
A team of physicists led by Kanazawa University demonstrate a theoretical mechanism that would explain the tiny value for the mass of neutrinos and point out that key operators of the mechanism can be probed by current and future experiments.
Physicists cast doubt on neutrino theory
University of Cincinnati physicists, as part of an international research team, are raising doubts about the existence of an exotic subatomic particle that failed to show up in twin experiments.
Exotic neutrinos will be difficult to ferret out
An international team tracking the 'new physics' neutrinos has checked the data of all the relevant experiments associated with neutrino detections against Standard Model extensions proposed by theorists.
Excess neutrinos and missing gamma rays?
A new model points to the coronoe of supermassive black holes at the cores of active galaxies to help explain the excess neutrinos observed by the IceCube Neutrino Observatory.
Where neutrinos come from
Russian astrophysicists have come close to solving the mystery of where high-energy neutrinos come from in space.
Where did the antimatter go? Neutrinos shed promising new light
We live in a world of matter -- because matter overtook antimatter, though they were both created in equal amounts when our universe began.
Strongest evidence yet that neutrinos explain how the universe exists
New data throws more support behind the theory that neutrinos are the reason the universe is dominated by matter.
Why didn't the universe annihilate itself? Neutrinos may hold the answer
New results from an experiment called T2K suggest that physicists are closer than ever before to answering a major mystery: Why didn't the universe annihilate itself in a humungous burst of energy not long after the Big Bang?
T2K insight into the origin of the universe
Lancaster physicists working on the T2K major international experiment in Japan are closing in on the mystery of why there is so much matter in the universe, and so little antimatter.
Radar and ice could help detect an elusive subatomic particle
A new study published today in the journal Physical Review Letters shows, for the first time, an experiment that could detect a class of ultra-high-energy neutrinos using radar echoes.
More Neutrinos News and Neutrinos Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.