Nav: Home

Nanocars taken for a rough ride

June 01, 2016

If you're driving a nanocar on the open road, things are bound to get sticky.

Rice University researchers who developed the first nanocars and colleagues at North Carolina State University found in recent tests that driving their vehicles in ambient conditions - exposed to open air, rather than a vacuum - got dicey after a time because the hydrophobic single-molecule cars stuck to the "road" and created what amounted to large speed bumps.

The findings were reported in the American Chemical Society's Journal of Physical Chemistry C.

The work by Rice chemist James Tour, NC State analytical chemist Gufeng Wang and their colleagues came as Rice prepares to take part in the first NanoCar Race in Toulouse, France, in October. Rice researchers are members of one of five international teams that plan to enter the competition.

Just like in the macro world, driving conditions are important for moving nanocars. Though the race will be run in an ultra-cold vacuum, the Rice researchers thought it wise to study how their latest model of nanocars would fare in a more natural setting.

"Our long-term goal is to make nanomachines that operate in ambient environments," Tour said. "That's when they will show potential to become useful tools for medicine and bottom-up manufacturing."

The newest generation of Rice nanocars features adamantane wheels that are slightly hydrophobic (water-repellent). Tour said some hydrophobicity is important to help keep the nanocars attached to a surface, but if the tires are too hydrophobic, the cars could become permanently immobilized. That is because hydrophobic things tend to stick together to minimize the amount of surface area that is in contact with water. Things that are hydrophilic, or water-liking, are more amenable to floating freely in water, Tour said.

In the latest Rice tests with the new tires, the nanocars were placed on surfaces that were either clean glass or glass coated with the polymer polyethylene glycol (PEG). Glass is the most frequently used substrate in nanocar research. Tour said the PEG-coated glass slides were used for their anti-fouling - nonsticky - properties, while the clean glass slides were treated with hydrogen peroxide so the hydrophobic wheels wouldn't stick.

He said the cars weren't so much being driven as undergoing "directed diffusion" in the tests. The point, he said, was to establish the kinetics of nanocar movement and understand the potential energy surface interaction between the car and surface over time.

"We want to know what makes a nanocar 'hit the brakes' and how much external energy we need to apply to start it moving again," he said.

The researchers let their cars run freely on a solid surface exposed to the air and tracked their movements by exciting embedded fluorescent tags.

The cars that moved via Brownian diffusion slowed down during the 24 hours that the slides were under observation. Tour said slides absorbed molecules from the air; as more and more of these molecules stuck to the surface, the slides become progressively more "dirty" throughout the experiment. Each nanocar is a single, complex molecule that contains just a few hundred atoms, so any other molecules they encounter on the roadway are huge obstacles that act like sticky foam. Each collision with one of these obstructions makes the nanocar slow down, and eventually the cars become permanently stuck.

Wang said that from an energy perspective -- that is, the energetic relationship between the molecular cars and those that make up the road -- molecules adsorbed from air generate many potential energy wells, just like puddles on the potential energy surface. These puddles can slow or permanently trap the nanocars.

Tests showed that nearly twice as many of the cars appeared to move on the nonsticking PEG slides, and all moved a little faster than those on the bare glass.

The researchers noted that they could not view the new models with scanning tunneling microscopes because those only work in a vacuum and they emit energy that could influence movement of the cars. For this reason, the researchers tagged each nanocar with a fluorescent marker and used confocal microscopes to track the cars' movements.
-end-
Co-authors of the paper are graduate students Victor Garcia-López and Pin-Lei Chu of Rice and graduate students Fang Chen and Tao Jin and postdoctoral scholar Bhanu Neupane of North Carolina State. Wang is an assistant professor of analytical chemistry at North Carolina State. Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of computer science and of materials science and nanoengineering at Rice.

Read the abstract at http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b01249.

This news release can be found online at http://news.rice.edu/2016/06/01/nanocars-taken-for-a-rough-ride/

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related materials:

James M. Tour Group: http://www.jmtour.com

Gufeng Wang Group: http://www4.ncsu.edu/~gwang10/index.htm

Wiess School of Natural Sciences: http://naturalsciences.rice.edu

NanoCar Race: http://nanocar-race.cnrs.fr/indexEnglish.php

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,910 undergraduates and 2,809 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for best quality of life and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Rice University

Related Glass Articles:

Glass tables can cause life-threatening injuries
Faulty glass in tables can cause life-threatening injuries, according to a Rutgers study, which provides evidence that stricter federal regulations are needed to protect consumers.
The nature of glass-forming liquids is more clear
Researchers from The University of Tokyo have found that attractive and repulsive interactions between particles are both essential to form structural order that controls the dynamics of glass-forming liquids.
Experimental study of how 'metallic glass' forms challenges paradigm in glass research
Unlike in a crystal, the atoms in a metallic glass are not ordered when the liquid solidifies.
On-demand glass is right around the corner
A research group coordinated by physicists of the University of Trento was able to probe internal stress in colloidal glasses, a crucial step to control the mechanical properties of glasses.
Glass from a 3D printer
ETH researchers used a 3D printing process to produce complex and highly porous glass objects.
Making glass more clear
Northwestern University researchers have developed an algorithm that makes it possible to design glassy materials with dynamic properties and predict their continually changing behaviors.
Researchers use 3D printer to print glass
For the first time, researchers have successfully 3D printed chalcogenide glass, a unique material used to make optical components that operate at mid-infrared wavelengths.
New family of glass good for lenses
A new composition of germanosilicate glass created by adding zinc oxide has properties good for lens applications, according to Penn State researchers.
In-depth insights into glass corrosion
Silicate glass has many applications, including the use as a nuclear waste form to immobilize radioactive elements from spent fuel.
New research questions the 'Glass Cliff' and corroborates the persistent 'Glass Ceiling'
Are women more likely to be appointed to leadership positions in crisis situations when companies are struggling with declining profits?
More Glass News and Glass Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.