Nav: Home

New approach to nuclear structure, freely available

June 01, 2016

The atomic nucleus is highly complex. This complexity partly stems from the nuclear interactions in atomic nuclei, which induce strong correlations between the elementary particles, or nucleons, that constitute the heart of the atom. The trouble is that understanding this complexity often requires a tremendous amount of computational power. In a new study published in EPJ A, Susanna Liebig from Forschungszentrum Jülich, Germany, and colleagues propose a new approach to nuclear structure calculations. The results are freely available to the nuclear physicists' community so that other groups can perform their own nuclear structure calculations, even if they have only limited computational resources.

The idea outlined in this work is to describe the quantum mechanical states of nuclei in terms of relative coordinates, which makes it possible to describe the correlations between nucleons more easily. This approach also helps to separate out the motion of the centre of mass, thus further reducing the complexity of the problem. To date, most nuclear structure calculations have been performed using single particle basis states, as (in keeping with what is referred to as the Pauli exclusion principle) two identical elementary particles cannot occupy the same basis state--an aspect that is tremendously difficult to address in relative coordinates... Now, in the new work, the authors generate sets of basis states for nucleons in complex nuclei, which feature anti-symmetrical relative coordinates.

The authors introduce an algorithm designed to reflect the anti-symmetrized nature of the nucleon states using standard harmonic oscillator states for the light p-shell nuclei. The states are produced along with their corresponding recoupling coefficients, making it possible to include two- and three-nucleon operators. The study focuses on several p-shell nuclei and examines their dependence on the harmonic oscillator frequency. Subsequently, the authors extract the binding and excitation energies of these nuclei.
-end-
Reference: S. Liebig, U.-G. Meißner, and A. Nogga (2016), Jacobi no-core shell model for p-shell nuclei, European Physical Journal A 52: 103, DOI 10.1140/epja/i2016-16103-5

Springer

Related Nuclei Articles:

Hydrogen peroxide protects plants against sun damage
Plants use hydrogen peroxide (H2O2) -- best known for use in bleach and hair treatments -- to control how their cells react to varying levels of light, new research shows.
Neutron-rich nucleus shapeshifts between a rugby ball and a discus
Researchers have shown that there are two coexisting, competing quantum shapes at low energy in 98Kr, never before seen for neutron-rich Kr isotopes.
Physicists use numerical 'tweezers' to study nuclear interactions
Researchers from North Carolina State University and the Ruhr-Universität Bochum have developed numerical 'tweezers' that can pin a nucleus in place, enabling them to study how interactions between protons and neutrons produce forces between nuclei.
In a neutron-rich tin nucleus, electromagnetism can win over the strong force
In a recent experiment performed at the Radioactive Isotope Beam Factory at RIKEN, an international collaboration with scientists from eleven countries, led by scientists of the Instituto de Estructura de la Materia, CSIC (Spain) and the RIKEN Nishina Center (Japan), made a very surprising observation: High-energy gamma rays -- which are mediated by the electromagnetic force -- are emitted in the decay of a certain excited nucleus -- tin 133, in competition with neutron emission, the decay mode mediated by the strong nuclear force.
'Fire-streaks' are created in collisions of atomic nuclei
At very high energies, the collision of massive atomic nuclei in an accelerator generates hundreds or even thousands of particles that undergo numerous interactions.
More Nuclei News and Nuclei Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...