Nav: Home

Genetic switch that turned moths black also colors butterflies

June 01, 2016

The same gene that enables tropical butterflies to mimic each other's bright and colourful patterning also caused British moths to turn black amid the grime of the industrial revolution, researchers have found.

Writing in the journal Nature, a team of researchers led by academics at the Universities of Cambridge and Sheffield, report that a fast-evolving gene known as "cortex" appears to play a critical role in dictating the colours and patterns on butterfly wings.

A parallel paper in the same journal by researchers from the University of Liverpool shows that this same gene also caused the peppered moth to turn black during the mid-19th century, when it evolved to find new ways to camouflage itself; a side-effect of industrial pollution at the time.

The finding offers clues about how genetics plays a role in making evolution a predictable process. For reasons the researchers have yet to understand in full, the cortex gene, which helps to regulate cell division in butterflies and moths, has become a major target for natural selection acting on colour and pattern on the wings.

Chris Jiggins, Professor of Evolutionary Biology and a Fellow of St John's College, University of Cambridge, said: "What's exciting is that it turns out to be the same gene in both cases. For the moths, the dark colouration developed because they were trying to hide, but the butterflies use bright colours to advertise their toxicity to predators. It raises the question that given the diversity in butterflies and moths, and the hundreds of genes involved in making a wing, why is it this one every time?"

Dr Nicola Nadeau, a NERC Research Fellow from the University of Sheffield added: "It's amazing that the same gene controls such a diversity of different colours and patterns in butterflies and a moth. Our study, together with the findings from the University of Liverpool, shows that the cortex gene is important for colour and pattern evolution in this whole group of insects."

Butterflies and moths comprise the order of insects known as Lepidoptera. Nearly all of the 160,000 types of moth and 17,000 types of butterfly have different wing patterns, which are adapted for purposes like attracting mates, giving off warnings, camouflage (also known as "crypsis"), and thermal regulation.

These wing patterns are actually made up of tiny coloured scales arranged like tiles on a roof. Although they have been studied by biologists for over a century, the molecular mechanisms which control their development are only now starting to be uncovered.

The peppered moth is one of the most famous examples of evolution by natural selection. Until the 19th Century, peppered moths were predominantly pale-coloured, and used this to camouflage themselves against lichen-covered tree trunks, which made them almost invisible to predators.

During the industrial revolution, however, the lichen on trees in some parts of the country was killed by pollution, and soot turned the trunks black. A corresponding change was seen in the in peppered moths which turned black as well, helping them to remain camouflaged from birds. The process is known as industrial melanism - melanism meaning the development of dark coloured pigmentation.

The Liverpool-led team found that this colour change was produced by a mutation in the cortex gene, which occurred during the mid 1800s, just before the first reported sighting of black peppered moths. Fascinatingly, however, the Cambridge-Sheffield study has now shown that exactly the same gene also influences the extremely bright and colourful patterns of Heliconius - the name given to about 40 different closely-related species of beautiful, tropical butterflies found in South America.

Heliconius colour patterns are used to send a signal to potential predators that the butterflies are toxic if eaten, and different types of Heliconius butterfly mimic one another by using their bright colours as warning signals. Unlike the dark colouring of the peppered moth, it is therefore an evolutionary development that is meant to be seen.

The researchers carried out fine-scale mapping, looking for parts of the DNA sequence that were specifically different in butterflies with different patterns, in three different Heliconius species, and in each case the cortex gene was found to be responsible for this adaptation in their patterning.

Because Heliconius species are extremely diverse, the study of what causes variations in their patterning can provide more general clues about the genetic switches that control diversification in species.

In most cases, the genes responsible for these processes are known as "transcription factors" - meaning that they are responsible for turning other genes on and off. Intriguingly, what made cortex such an elusive switch to spot was the fact that it does not do this. Instead, it is a cell cycle regulator, which means that it controls when cells divide and thus when different coloured scales develop within a butterfly wing.

"It's a different gene to the one we might have expected and we still need to do more to understand exactly what it's doing, and how it's doing it," Jiggins said. Dr Nadeau added "Our results are even more surprising because the cortex gene was previously thought to only be involved in producing egg cells in female insects, and is very similar to a gene that controls cell division in everything from yeast to humans."

The study, The gene cortex controls mimicry and crypsis in butterflies and moths, is reported in the June 2 issue of Nature.
-end-


St John's College, University of Cambridge

Related Evolution Articles:

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.
Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.
How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.
Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.