Nav: Home

Purdue, CU-Boulder study shows how comets break up, make up

June 01, 2016

For some comets, breaking up is not that hard to do.

A new study led by Purdue University and the University of Colorado Boulder indicates the bodies of some periodic comets - objects that orbit the sun in less than 200 years - may regularly split in two, then reunite down the road.

In fact, this may be a repeating process fundamental to comet evolution, according to the study, which is being published in Nature on June 1.

The team, led by Purdue postdoctoral fellow Masatoshi Hirabayashi and CU-Boulder Distinguished Professor Daniel Scheeres, studied several comets, primarily a bizarre rubber duck-shaped object known as 67P/Churyumov-Gerasimenko (67P). Images of 67P show two cracks, each longer than an American football field, on the comet's neck that connects its two larger lobes.

In order to reconstruct the past life of 67P, the team used numerical models in which the spin rate was cranked up from its roughly one rotation every 12 hours today to one rotation every 7 to 9 hours. The models showed the faster spin would lead to more stress and the formation of two similar cracks on the neck of 67P in the same location.

"Our spin analysis predicted exactly where these cracks would form," said Scheeres of CU-Boulder's aerospace engineering sciences department. "We now have a new understanding of how some comets may evolve over time."

Often referred to as "dirty snowballs," comets are made of ice, rocks and dust. Comet 67P is "bilobed" meaning it has two larger parts connected by a thinner neck.

Scheeres said there are several factors that can cause comet nuclei to spin faster. During flybys of the sun or Jupiter, for example, periodic comets like 67P can get torqued by gravity, causing them to either spin up or spin down. The spin also can be affected by periodic comet "outgassing," when icy compounds like carbon dioxide and ammonia shift directly from a frozen state to gaseous state and blow off the surface.

The models run by the team showed that if 67P's spin is increased to less than seven hours per rotation, the head will pop off, said Scheeres. So what happens then?

"The head and body aren't going to be able to escape from each other," he said. "They will begin orbiting each other, and in weeks, days or even hours they will come together again during a slow collision, creating a new comet nucleus configuration."

This pattern could go on for the life of the comet, said Scheeres.

Bilobed comets may turn out to be fairly common. Of the seven comets that have been imaged in high resolution by astronomers, five of those - including P67 and Comet Halley - are bilobed, said Scheeres. Studies of the bilobed comets by the team indicate they all are similar in their volume ratios between each lobe, meaning they probably go through the same break-up/make-up cycles as 67P.

Discovered in 1969 and visited by the European Space Agency's Rosetta spacecraft in 2014, 67P is roughly 2.5 miles on a side and orbits the sun every 6.5 years. The team showed that the comet's spin rate can change chaotically, driven by outgassing events and its changing orbit driven by flybys of Jupiter.

To show how this comet-sun interaction affected the past evolution of 67P's spin period, the researchers numerically modeled 1,000 comet "clones" of 67P under varying conditions going back 5,000 years. Five thousand years was selected because it is the approximate lifetime of a "Jupiter family comet" like 67P, whose orbit is affected by the gravity of not only the sun but the gas giant Jupiter, the largest planet in our solar system, said Scheeres.

Periodic comets like 67P are thought to originate in the Kuiper Belt, a vast region beyond Neptune's orbit harboring billions of comets and icy moons. The team hypothesized that the repeated break-up and make-up of bilobed comets may have caused them to erode too much to have survived their journeys into the inner solar system 4 billion years ago when it was a shooting gallery of asteroids, moons and protoplanets.

Other study authors include Assistant Professor Jay McMahon of CU-Boulder, Steven Chesley of the Jet Propulsion Laboratory in Pasadena and Simone Marchi of the Southwest Research Institute Planetary Science Directorate in Boulder. Purdue's Hirabayashi received his doctorate at CU-Boulder under Scheeres in 2015.

Scheeres is the radio science team leader for NASA's OSIRIS-Rex mission, now slated to launch in September from Florida to visit the near-Earth asteroid, Bennu.
-end-


University of Colorado at Boulder

Related Solar System Articles:

Second alignment plane of solar system discovered
A study of comet motions indicates that the Solar System has a second alignment plane.
Pressure runs high at edge of solar system
Out at the boundary of our solar system, pressure runs high.
What a dying star's ashes tell us about the birth of our solar system
A UA-led team of researchers discovered a dust grain forged in a stellar explosion before our solar system was born.
What scientists found after sifting through dust in the solar system
Two recent studies report discoveries of dust rings in the inner solar system: a dust ring at Mercury's orbit, and a group of never-before-detected asteroids co-orbiting with Venus, supplying the dust in Venus' orbit.
Discovered: The most-distant solar system object ever observed
A team of astronomers has discovered the most-distant body ever observed in our solar system.
Discovery of the first body in the Solar System with an extrasolar origin
Asteroid 2015 BZ509 is the very first object in the Solar System shown to have an extrasolar origin.
First interstellar immigrant discovered in the solar system
A new study has discovered the first known permanent immigrant to our solar system.
A star disturbed the comets of the solar system in prehistory
About 70,000 years ago, when the human species was already on Earth, a small reddish star approached our solar system and gravitationally disturbed comets and asteroids.
Scientists detect comets outside our solar system
Scientists from MIT and other institutions, working closely with amateur astronomers, have spotted the dusty tails of six exocomets -- comets outside our solar system -- orbiting a faint star 800 light years from Earth.
Does the organic material of comets predate our solar system?
The Rosetta space probe discovered a large amount of organic material in the nucleus of comet 'Chury.' In an article published by MNRAS on Aug.
More Solar System News and Solar System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.