Nav: Home

Sour taste cells detect water

June 01, 2017

New research from Caltech shows that sour-sensing taste cells play an important role in detecting water on the tongue.

The work, appearing in a paper in the May 29 issue of the journal Nature Neuroscience, was done in the laboratory of Yuki Oka, assistant professor of biology.

"The tongue can detect various key nutrient factors, called tastants -- such as sodium, sugar, and amino acids -- through taste," says Oka. "However, how we sense water in the mouth was unknown. Many insect species are known to 'taste' water, so we imagined that mammals also might have a machinery in the taste system for water detection."

Taste cells relay information about tastants to the brain via nerves called the taste nerves. First author and graduate student Dhruv Zocchi measured the electrical responses from taste nerves in mice to various tastants as well as to water. The nerves responded in predictable ways to different basic tastes--sweet, sour, bitter, salty, and umami -- but they were also stimulated by pure water. "This was exciting because it implied that some taste cells are capable of detecting water," Zocchi says.

Each basic taste is mediated by distinct subsets of taste cells. In order to test which taste cells respond to water, the team genetically and pharmacologically blocked the function of individual cell fopulations. For example, when the salt taste receptor was blocked, salt no longer triggered activity in taste nerves, but responses to other tastes were not affected. "To our surprise, when we silenced sour taste cells, water responses were also completely blocked," Oka says. "The results suggested that water is sensed through sour taste cells."

To prove that the sour cells indeed contribute to water detection, the team used a technique called optogenetics that allowed them to stimulate sour cells with light instead of water. The researchers removed water from the animals' water bottle and made it so that the bottle's spout emitted a blue light when the animals touched it. They discovered that thirsty genetically engineered mice would go to the spout for water, encounter the light, and "drink" it. Though the mice were not rehydrated, they kept licking the water source because the light created a sensory cue of water.

A sour taste is often associated with an unpleasant taste quality that reduces animals' preference toward fluid--for example, mice avoid drinking lemon juice. Interestingly, when the team stimulated sour cells with light, they did not observe that kind of aversive behavior in the engineered mice.

"These results raise the question: What information about taste are sour cells really relaying to the brain?" Zocchi says. "Maybe sour cells are not directly linked to the unpleasant sourness that we perceive, but instead they may induce a different type of taste, like water, when stimulated."

"It's important to note that stimulation of these cells does not alleviate thirst," says Oka. "But this finding helps us understand how the brain interprets water signals under normal and thirsty states. Next, we would like to tackle the mechanisms by which the hedonic value or 'pleasantness' of sensory inputs are regulated by brain activity."
-end-
The paper is titled "The cellular mechanism for water detection in the mammalian taste system." Gunther Wennemuth of Duisburg-Essen University is a co-author. Funding was provided by startup funds from the president and provost of Caltech and Caltech's Division of Biology and Biological Engineering, the Searle Scholars Program, the Edward Mallinckrodt, Jr. Foundation, the Okawa Foundation, the McKnight Foundation, and the Klingenstein-Simons Fellowship Award.

California Institute of Technology

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".