Nav: Home

New machine learning approach could accelerate bioengineering

June 01, 2018

Scientists from the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a way to use machine learning to dramatically accelerate the design of microbes that produce biofuel.

Their computer algorithm starts with abundant data about the proteins and metabolites in a biofuel-producing microbial pathway, but no information about how the pathway actually works. It then uses data from previous experiments to learn how the pathway will behave. The scientists used the technique to automatically predict the amount of biofuel produced by pathways that have been added to E. coli bacterial cells.

The new approach is much faster than the current way to predict the behavior of pathways, and promises to speed up the development of biomolecules for many applications in addition to commercially viable biofuels, such as drugs that fight antibiotic-resistant infections and crops that withstand drought.

The research is published May 29 in the journal npj Systems Biology and Applications.

In biology, a pathway is a series of chemical reactions in a cell that produce a specific compound. Researchers are exploring ways to re-engineer pathways, and import them from one microbe to another, to harness nature's toolkit to improve medicine, energy, manufacturing, and agriculture. And thanks to new synthetic biology capabilities, such as the gene-editing tool CRISPR-Cas9, scientists can conduct this research at a precision like never before.

"But there's a significant bottleneck in the development process," said Hector Garcia Martin, group lead at the DOE Agile BioFoundry and director of Quantitative Metabolic Modeling at the Joint BioEnergy Institute (JBEI), a DOE Bioenergy Research Center funded by DOE's Office of Science and led by Berkeley Lab. The research was performed by Zak Costello (also with the Agile BioFoundry and JBEI) under the direction of Garcia Martin. Both researchers are also in Berkeley Lab's Biological Systems and Engineering Division.

"It's very difficult to predict how a pathway will behave when it's re-engineered. Trouble-shooting takes up 99% of our time. Our approach could significantly shorten this step and become a new way to guide bioengineering efforts," Garcia Martin added.

The current way to predict a pathway's dynamics requires a maze of differential equations that describe how the components in the system change over time. Subject-area experts develop these "kinetic models" over several months, and the resulting predictions don't always match experimental results.

Machine learning, however, uses data to train a computer algorithm to make predictions. The algorithm learns a system's behavior by analyzing data from related systems. This allows scientists to quickly predict the function of a pathway even if its mechanisms are poorly understood -- as long as there are enough data to work with.

The scientists tested their technique on pathways added to E. coli cells. One pathway is designed to produce a bio-based jet fuel called limonene; the other produces a gasoline replacement called isopentenol. Previous experiments at JBEI yielded a trove of data related to how different versions of the pathways function in various E. coli strains. Some of the strains have a pathway that produces small amounts of either limonene or isopentenol, while other strains have a version that produces large amounts of the biofuels.

The researchers fed this data into their algorithm. Then machine learning took over: The algorithm taught itself how the concentrations of metabolites in these pathways change over time, and how much biofuel the pathways produce. It learned these dynamics by analyzing data from the two experimentally known pathways that produce small and large amounts of biofuels.

The algorithm used this knowledge to predict the behavior of a third set of "mystery" pathways the algorithm had never seen before. It accurately predicted the biofuel-production profiles for the mystery pathways, including that the pathways produce a medium amount of fuel. In addition, the machine learning-derived prediction outperformed kinetic models.

"And the more data we added, the more accurate the predictions became," said Garcia Martin. "This approach could expedite the time it takes to design new biomolecules. A project that today takes ten years and a team of experts could someday be handled by a summer student."
The work was part of the DOE Agile BioFoundry, supported by DOE's Office of Energy Efficiency and Renewable Energy, and the Joint BioEnergy Institute, supported by DOE's Office of Science.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

DOE/Lawrence Berkeley National Laboratory

Related Algorithm Articles:

Scientists use algorithm to peer through opaque brains
A new algorithm helps scientists record the activity of individual neurons within a volume of brain tissue.
Algorithm generates origami folding patterns for any shape
A new algorithm generates practical paper-folding patterns to produce any 3-D structure.
New algorithm tracks neurons in bendy brain of freely crawling worm
Scientists at Princeton University have developed a new algorithm to track neurons in the brain of the worm Caenorhabditis elegans while it crawls.
Does my algorithm work? There's no shortcut for community detection
Community detection is an important tool for scientists studying networks, but a new paper published in Science Advances calls into question the common practice of using metadata for ground truth validation.
'Cyclops' algorithm spots daily rhythms in cells
Humans, like virtually all other complex organisms on Earth, have adapted to their planet's 24-hour cycle of sunlight and darkness.
An algorithm that knows when you'll get bored with your favorite mobile game
Researchers from the Tokyo-based company Silicon Studio, led by Spanish data scientist África Periáñez, have developed a new algorithm that predicts when a user will leave a mobile game.
Algorithm identified Trump as 'not-married'
Scientists from Russia and Singapore created an algorithm that predicts user marital status with 86% precision using data from three social networks instead of one.
A novel positioning algorithm based on self-adaptive algorithm
Much attention has been paid to the Taylor series expansion (TSE) method these years, which has been extensively used for solving nonlinear equations for its good robustness and accuracy of positioning.
Algorithm can create a bridge between Clinton and Trump supporters
The article that received the best student-paper award in the Tenth International Conference on Web Search and Data Mining (WSDM 2017) builds algorithmic techniques to mitigate the rising polarization by connecting people with opposing views -- and evaluates them on Twitter.
Deep learning algorithm does as well as dermatologists in identifying skin cancer
In hopes of creating better access to medical care, Stanford researchers have trained an algorithm to diagnose skin cancer.

Related Algorithm Reading:

Introduction to Algorithms, 3rd Edition (The MIT Press)
by Thomas H. Cormen (Author), Charles E. Leiserson (Author), Ronald L. Rivest (Author), Clifford Stein (Author)

Grokking Algorithms: An illustrated guide for programmers and other curious people
by Aditya Bhargava (Author)

Algorithms (4th Edition)
by Robert Sedgewick (Author), Kevin Wayne (Author)

The Algorithm Design Manual
by Steven S Skiena (Author)

by Sanjoy Dasgupta Algorithms (Author), Christos H. Papadimitriou Algorithms (Author), Umesh Vazirani Algorithms (Author)

Introduction to Algorithms (Eastern Economy Edition)
by Thomas H. Cormen (Author), Charles E. Leiserson (Author), Ronald L. Rivest (Author), Clifford Stein (Author)

Algorithms Illuminated (Part 2): Graph Algorithms and Data Structures (Volume 2)
by Tim Roughgarden (Author)

Algorithms to Live By: The Computer Science of Human Decisions
by Brian Christian (Author), Tom Griffiths (Author)

Algorithms of Oppression: How Search Engines Reinforce Racism
by Safiya Umoja Noble (Author)

Algorithms for Optimization (The MIT Press)
by Mykel J. Kochenderfer (Author), Tim A. Wheeler (Author)

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#514 Arctic Energy (Rebroadcast)
This week we're looking at how alternative energy works in the arctic. We speak to Louie Azzolini and Linda Todd from the Arctic Energy Alliance, a non-profit helping communities reduce their energy usage and transition to more affordable and sustainable forms of energy. And the lessons they're learning along the way can help those of us further south.