Nav: Home

Research brief: New approach boosts effort to scale up biodiversity monitoring

June 01, 2018

The value of ecological biodiversity for maintaining ecosystem stability and function is well established, but a recent study points to a novel way to fine-tune our ability to measure it at larger scales. The study, published in Nature Ecology and Evolution, found that using an imaging tool to evaluate biodiversity is more effective than traditional methods premised on painstaking field work.

Lead author Anna Schweiger, a postdoctoral associate in the College of Biological Sciences, and a team of fellow researchers, used spectra of light reflected from plants to evaluate biodiversity and predict ecosystem function.

"We have known for decades that the chemical composition of plants can be estimated from reflectance spectra," said Schweiger. "What we found is that the spectral dissimilarity, or the overall differences in spectral reflectance, among plant species increases with their functional dissimilarity and evolutionary divergence time."

For the study, the team first measured the light reflectance of plants in 35 plots at Cedar Creek Ecosystem Science Reserve -- a field station north of Minneapolis famous for long-term ecological experiments -- using a field spectrometer. The spectrometer allows the researchers to evaluate how much light plants reflect at the leaf level across a range of wavelengths. By taking the leaf-level data the team found that the spectral diversity of a plant community predicted aboveground productivity, a critical ecosystem function, to a similar or higher degree than measures of species functional differences, their phylogenetic distances on the tree of life or the number of species in a plant community.

Seeing that the ecosystem effect of plant diversity can be effectively evaluated using spectrometry, the team also wanted to know if they could scale it up. By using an imaging spectrometer mounted three meters above ground at the same 35 plots at Cedar Creek and running a scan, they found that their spectral diversity metric performed similarly when calculated from spectral images.

"The findings indicate that spectral diversity provides a powerful, integrative method of assessing several dimensions of biodiversity relevant to ecosystem function," says co-author John Gamon, faculty member at the University of Nebraska-Lincoln.

This research is an element of a larger project led by senior author Jeannine Cavender-Bares, a professor in the College of Biological Sciences' Department of Ecology, Evolution and Behavior. With funding from a Dimensions of Biodiversity grant from NSF and NASA, the team aims to more completely understand how to predict ecosystem processes when comparing optical diversity to genetic, phylogenetic and functional diversity. The team's next step is to run an imaging spectrometry scan from a drone. The ability to scan from the sky offers new potential for researchers to further understand the ecosystem benefits of biodiversity, especially in difficult-to-reach locations.

"The rapid changes in the Earth's biodiversity that are underway require novel means of continuous and global detection," says Cavender-Bares. "This study demonstrates that we can detect plant biodiversity using spectral measurements from plant leaves or from the sky, which opens a whole new range of possibilities."
-end-
About the College of Biological Sciences

The College of Biological Sciences at the University of Minnesota is one of two colleges in the United States dedicated to the biological sciences with undergraduate majors and graduate programs that cover the spectrum of life from molecules to ecosystems.

University of Minnesota

Related Biodiversity Articles:

About the distribution of biodiversity on our planet
Large open-water fish predators such as tunas or sharks hunt for prey more intensively in the temperate zone than near the equator.
Bargain-hunting for biodiversity
The best bargains for conserving some of the world's most vulnerable salamanders and other vertebrate species can be found in Central Texas and the Appalachians, according to new conservation tools developed at the National Institute for Mathematical and Biological Synthesis (NIMBioS) at the University of Tennessee, Knoxville.
Researchers solve old biodiversity mystery
The underlying cause for why some regions are home to an extremely large number of animal species may be found in the evolutionary adaptations of species, and how they limit their dispersion to specific natural habitats.
Biodiversity offsetting is contentious -- here's an alternative
A new approach to compensate for the impact of development may be an effective alternative to biodiversity offsetting -- and help nations achieve international biodiversity targets.
Biodiversity yields financial returns
Farmers could increase their revenues by increasing biodiversity on their land.
Biodiversity and wind energy
The location and operation of wind energy plants are often in direct conflict with the legal protection of endangered species.
Mapping global biodiversity change
A new study, published in Science, which focuses on mapping biodiversity change in marine and land ecosystems shows that loss of biodiversity is most prevalent in the tropic, with changes in marine ecosystems outpacing those on land.
What if we paid countries to protect biodiversity?
Researchers from Sweden, Germany, Brazil and the USA have developed a financial mechanism to support the protection of the world's natural heritage.
Grassland biodiversity is blowing in the wind
Temperate grasslands are the most endangered but least protected ecosystems on Earth.
The loss of biodiversity comes at a price
A University of Cordoba research team ran the numbers on the impact of forest fires on emblematic species using the fires in Spain's Doñana National Park and Segura mountains in 2017 as examples
More Biodiversity News and Biodiversity Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Nina
Producer Tracie Hunte stumbled into a duet between Nina Simone and the sounds of protest outside her apartment. Then she discovered a performance by Nina on April 7, 1968 - three days after the assassination of Dr. Martin Luther King Jr. Tracie talks about what Nina's music, born during another time when our country was facing questions that seemed to have no answer, meant then and why it still resonates today.  Listen to Nina's brother, Samuel Waymon, talk about that April 7th concert here.