Nav: Home

Research brief: New approach boosts effort to scale up biodiversity monitoring

June 01, 2018

The value of ecological biodiversity for maintaining ecosystem stability and function is well established, but a recent study points to a novel way to fine-tune our ability to measure it at larger scales. The study, published in Nature Ecology and Evolution, found that using an imaging tool to evaluate biodiversity is more effective than traditional methods premised on painstaking field work.

Lead author Anna Schweiger, a postdoctoral associate in the College of Biological Sciences, and a team of fellow researchers, used spectra of light reflected from plants to evaluate biodiversity and predict ecosystem function.

"We have known for decades that the chemical composition of plants can be estimated from reflectance spectra," said Schweiger. "What we found is that the spectral dissimilarity, or the overall differences in spectral reflectance, among plant species increases with their functional dissimilarity and evolutionary divergence time."

For the study, the team first measured the light reflectance of plants in 35 plots at Cedar Creek Ecosystem Science Reserve -- a field station north of Minneapolis famous for long-term ecological experiments -- using a field spectrometer. The spectrometer allows the researchers to evaluate how much light plants reflect at the leaf level across a range of wavelengths. By taking the leaf-level data the team found that the spectral diversity of a plant community predicted aboveground productivity, a critical ecosystem function, to a similar or higher degree than measures of species functional differences, their phylogenetic distances on the tree of life or the number of species in a plant community.

Seeing that the ecosystem effect of plant diversity can be effectively evaluated using spectrometry, the team also wanted to know if they could scale it up. By using an imaging spectrometer mounted three meters above ground at the same 35 plots at Cedar Creek and running a scan, they found that their spectral diversity metric performed similarly when calculated from spectral images.

"The findings indicate that spectral diversity provides a powerful, integrative method of assessing several dimensions of biodiversity relevant to ecosystem function," says co-author John Gamon, faculty member at the University of Nebraska-Lincoln.

This research is an element of a larger project led by senior author Jeannine Cavender-Bares, a professor in the College of Biological Sciences' Department of Ecology, Evolution and Behavior. With funding from a Dimensions of Biodiversity grant from NSF and NASA, the team aims to more completely understand how to predict ecosystem processes when comparing optical diversity to genetic, phylogenetic and functional diversity. The team's next step is to run an imaging spectrometry scan from a drone. The ability to scan from the sky offers new potential for researchers to further understand the ecosystem benefits of biodiversity, especially in difficult-to-reach locations.

"The rapid changes in the Earth's biodiversity that are underway require novel means of continuous and global detection," says Cavender-Bares. "This study demonstrates that we can detect plant biodiversity using spectral measurements from plant leaves or from the sky, which opens a whole new range of possibilities."
-end-
About the College of Biological Sciences

The College of Biological Sciences at the University of Minnesota is one of two colleges in the United States dedicated to the biological sciences with undergraduate majors and graduate programs that cover the spectrum of life from molecules to ecosystems.

University of Minnesota

Related Biodiversity Articles:

Biodiversity is 3-D
The species-area relationship (SAC) is a long-time considered pattern in ecology and is discussed in most of academic Ecology books.
Thought Antarctica's biodiversity was doing well? Think again
Antarctica and the Southern Ocean are not in better environmental shape than the rest of the world.
Antarctica's biodiversity is under threat
A unique international study has debunked the popular view that Antarctica and the Southern Ocean are in much better ecological shape than the rest of the world.
Poor outlook for biodiversity in Antarctica
The popular view that Antarctica and the Southern Ocean are in a much better environmental shape than the rest of the world has been brought into question in a study publishing on March 28 in the open access journal PLOS Biology, by an international team lead by Steven L.
Temperature drives biodiversity
Why is the diversity of animals and plants so unevenly distributed on our planet?
Biodiversity needs citizen scientists
Could birdwatching or monitoring tree blossoms in your community make a difference in global environmental research?
Biodiversity loss in forests will be pricey
A new global assessment of forests -- perhaps the largest terrestrial repositories of biodiversity -- suggests that, on average, a 10 percent loss in biodiversity leads to a 2 to 3 percent loss in the productivity, including biomass, that forests can offer.
Biodiversity falls below 'safe levels' globally
Levels of global biodiversity loss may negatively impact on ecosystem function and the sustainability of human societies, according to UCL-led research.
Unravelling the costs of rubber agriculture on biodiversity
A striking decline in ant biodiversity found on land converted to a rubber plantation in China.
Nitrogen is a neglected threat to biodiversity
Nitrogen pollution is a recognized threat to sensitive species and ecosystems.

Related Biodiversity Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".