Orbital ordering triggers nucleation-growth behavior of electrons in an inorganic solid

June 01, 2020

A new study by researchers from Waseda University and the University of Tokyo found that orbital ordering in a vanadate compound exhibits a clear nucleation-growth behavior.

"We believe that this is the first observation of its kind, where electrons in an inorganic solid created two soft phases similar to vapor and water, and where a nucleation-growth behavior was observed due to the surface tension created between the phases," says Takuro Katsufuji, professor of physical sciences at Waseda University and principal investigator of this study.

The researchers published their peer-reviewed findings in Nature Communications on May 11, 2020.

When water vapor condenses, the vapor turns into dew as water nuclei form and grow, transitioning phases from gas to liquid. This formation and growth of the nuclei is called the nucleation-growth process, and it occurs in various types of phase transitions.

Though phase transitions also occur in solids, a nucleation-growth behavior has never been observed during electron-based phase transitions in inorganic materials. The most likely explanation is because there needs to be surface tension for this behavior to occur, but the hard solids could only create negligible surface tension compared with a bulk elastic energy.

In their study, Katsufuji and his team used the vanadate compound BaV10O15, an oxide with vanadium and barium. Previously, they found that at 130K, or approximately -140°C, the direction of orbitals possessed by the vanadium's electrons align, triggering a phase transition known as orbital ordering in this compound.

"Knowing this, what we did in our recent study was to partially replace vanadium with titanium, a chemical element located on the left of vanadium on the periodic table, to control the transition temperature of the orbital ordering," Katsufuji explains. "We revealed that the nucleation-growth process was happening by measuring the time dependence of the electrical resistivity, magnetic susceptibility, and the strain in the orbital ordering of this vanadate, and discovered that the electrons had created two vapor-water like soft phases in this organic solid and that there was surface tension between the two phases."

In the past, methods to obtain desirable characteristics with two-phase coexistence in solids have been tested with various materials and devices, but in most cases, it has been difficult to control the volume ratio and the forms of the two phases. However, it is expected that for these newly discovered soft phases, controlling the volume ratio and its forms could be done more easily. Also, BaV10O15 is known for its excellent performance as a thermoelectric material that can generate electricity from temperature difference, making this compound with two phases coexisting an attractive material.

Katsufuji adds, "The reason why nucleation-growth process occurs in BaV10O15 is because the surface tension between the two phases is quite large as a result of the coupling of degrees of freedom called orbitals and spins in electrons. We hope to progress research from the perspective that this is a new phenomenon that arises from such coupled degrees of freedom of electrons."

The researchers plan to measure various physical quantities of the vanadate compound at a state where the two phases coexist and understand how its physical properties can change as well as how its characteristics can improve as a functional material. Further, BaV10O15 is the first material as an inorganic compound where nucleation-growth process was observed, but it will be necessary to find whether there are other materials that exhibit nucleation-growth behavior.

Journal: Nature Communications

Article title: Nucleation and growth of orbital ordering

Authors: Takuro Katsufuji, Tomomasa Kajita, Suguru Yano, Yumiko Katayama, and Kazunori Ueno

DOI: 10.1038/s41467-020-16004-2

About Waseda University

Located in the heart of Tokyo, Waseda University is a leading private research university that has long been dedicated to academic excellence, innovative research, and civic engagement at both the local and global levels since 1882. Today, the student body at Waseda is approximately 50,000, nearly 8,000 of whom are from overseas, hailing from 125 countries. To learn more about Waseda University, visit https://www.waseda.jp/top/en

Waseda University

Related Behavior Articles from Brightsurf:

Variety in the migratory behavior of blackcaps
The birds have variable migration strategies.

Fishing for a theory of emergent behavior
Researchers at the University of Tsukuba quantified the collective action of small schools of fish using information theory.

How synaptic changes translate to behavior changes
Learning changes behavior by altering many connections between brain cells in a variety of ways all at the same time, according to a study of sea slugs recently published in JNeurosci.

I won't have what he's having: The brain and socially motivated behavior
Monkeys devalue rewards when they anticipate that another monkey will get them instead.

Unlocking animal behavior through motion
Using physics to study different types of animal motion, such as burrowing worms or flying flocks, can reveal how animals behave in different settings.

AI to help monitor behavior
Algorithms based on artificial intelligence do better at supporting educational and clinical decision-making, according to a new study.

Increasing opportunities for sustainable behavior
To mitigate climate change and safeguard ecosystems, we need to make drastic changes in our consumption and transport behaviors.

Predicting a protein's behavior from its appearance
Researchers at EPFL have developed a new way to predict a protein's interactions with other proteins and biomolecules, and its biochemical activity, merely by observing its surface.

Spirituality affects the behavior of mortgagers
According to Olga Miroshnichenko, a Sc.D in Economics, and a Professor at the Department of Economics and Finance, Tyumen State University, morals affect the thinking of mortgage payers and help them avoid past due payments.

Asking if behavior can be changed on climate crisis
One of the more complex problems facing social psychologists today is whether any intervention can move people to change their behavior about climate change and protecting the environment for the sake of future generations.

Read More: Behavior News and Behavior Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.