FloChiP, a new tool optimizing gene-regulation studies

June 01, 2020

In the cell, proteins often interact directly with DNA to regulate and influence the expression of genes. For this to happen, proteins need to travel into the cell's nucleus where the DNA is tightly twisted and packed as chromatin, which forms the well-known chromosomes.

When the protein reaches its target location, chromatin unwinds to reveal the section of DNA that the protein will interact with. This interaction is obviously of great interest to biologists as it lies at the heart of multiple important cell functions or even malfunctions that lead to disease.

To study protein-chromatin interactions, biologists use a technique called "chromatin immunoprecipitation" (ChIP). The basic idea behind ChIP is to use an antibody that targets the chromatin-binding protein, and then to "pull it down" or precipitate it with the captured section of DNA. The DNA that is bound by the protein is then identified via sequencing, which is why the technique is usually referred to as "ChIP-seq".

Since it was invented in 2007, ChIP-seq has become the most popular method for studying chromatin-associated proteins like histones and transcription factors. However, it requires a long sequence of manual steps that limit both its throughput and sensitivity.

Now, scientists led by Bart Deplancke at EPFL's Institute of Bioengineering have developed a new approach to ChIP that promises to automate and lower its cost and complexity. The new method, dubbed "FloChIP" uses microfluidics, a bioengineering field that EPFL has helped developing and expanding.

Microfluidics essentially involves the precise manipulation of fluids through chips that contain multiple, carefully designed channels. Because it mimics the inner dynamics of a cell, this technique can and is already used in a number of bioengineering processes.

FloChIP implements microfluidics to greatly streamline the ChIP workflow. In a paper published in PNAS, the EPFL scientists demonstrate that FloChIP is highly modular and can perform multiple ChIP-seq assays simultaneously and reproducibly in an automated way. In the paper, the researchers show this for both histone marks and transcription factors.

"Thanks to its cost-effectiveness, throughput and general applicability, we believe that FloChIP will establish itself as a valid complement to the existing tools for the study of chromatin biology and protein-DNA interactions," says Riccardo Dainese, the study's first author.

"With this new technology, true automation of a difficult assay such as ChIP is within reach," adds Deplancke. "This will hopefully catalyze an increased use of chromatin-bound proteins as highly informative diagnostic indicators for a wide range of diseases including cancer."
Other contributors

Swiss institute of Bioinformatics


Riccardo Dainese, Vincent Gardeux, Gerard Llimos, Daniel Alpern, Jia Yuan Jiang, Antonio Carlos Alves Meireles-Filho, Bart Deplancke. A parallelized, automated platform enabling individual or sequential ChIP of histone marks and transcription factors. PNAS 27 May 2020. DOI: 10.1073/pnas.1913261117

Ecole Polytechnique Fédérale de Lausanne

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.