Nav: Home

New NiMH batteries perform better when made from recycled old NiMH batteries

June 01, 2020

A new method for recycling old batteries can provide better performing and cheaper rechargeable hydride batteries (NiMH) as shown in a new study by researchers at Stockholm University.

"The new method allows the upcycled material to be used directly in new battery production," says Dag Noréus, professor at the Department of Materials and Environmental Chemistry at Stockholm University who, together with other researchers, has conducted the study published in the scientific journal Molecules.

The new recycling consists of mechanical washing and separation of reusable electrode material and corrosion products from old, used electrodes.

"More than 95 percent is useful and several steps can be saved in the manufacture of new batteries that also get better performance. Recycling will be easier as it avoids costly remelting and reduction included in the conventional battery recycling."

Hydride batteries, so-called NiMH batteries, are based on a nickel electrode and a hydrogen electrode, where the hydrogen is stored in a metal hydride. The battery is one of the four basic types of rechargeable batteries available on the market today. The others are based on lithium, nickel-cadmium or lead.

Used in hybrid vehicles and electric toothbrushes

NiMH batteries were developed during the 1990s and are used, for example, in hybrid vehicles such as the Toyota Prius, but also in electric toothbrushes and electric razors, that is, in appliances used near the body, where you want safer batteries that do not risk exploding like those of lithium. NiMH is also considered more environmentally friendly as it does not contain toxic heavy metals.

The research was initially focused on finding metal hydrides that could store large amounts of hydrogen in solid form. When successful, the first use was in rechargeable batteries. The high hydrogen content doubled the battery capacity compared to batteries of nickel-cadmium.

"The new thing with our study is that the material gains better properties when used in new batteries after passing a simplified recycling process. This is not a new battery, but a significant improvement of the usefulness of rechargeable hydride batteries."

Breakthrough during the Second World War

It is time consuming to develop rechargeable battery chemistries. During the Second World War came the breakthrough for nickel-cadmium batteries that could be used in portable electronics.

"It is difficult and takes a long time to get a rechargeable battery chemistry, despite the fact that one could basically build an electrochemical cell or battery of virtually all chemical reactions. The first rechargeable battery, based on lead, was introduced in the mid-1800s. Then we had to wait until the early 1900 for the rechargeable nickel-cadmium battery. Unfortunately, both were based on environmentally hazardous metals such as lead and cadmium."

The difficulty of finding workable battery chemistries is further reflected in the fact that it took almost until the end of 1900 before NiMH and lithium batteries emerged.

Modern rechargeable batteries contain some rare materials and materials that have undergone complicated and costly processing steps to work well, explains Dag Noréus. When the battery cells are manufactured, they must be activated. During this they undergo a number of cautious charge and discharge cycles according to a special schedule.

"It can be compared to the run-in period that previously newly purchased cars had to go through, when they were delivered from the factory. The formation of the batteries is done at the battery factory. It requires time and investments. Much of this can now be saved by using already activated material," says Dag Noréus.
-end-
The study has been conducted with the battery producer Nilar in Sweden.

More information

The article "Upcycling of Spent NiMH Battery Material - Reconditioned Battery Alloys Show Faster Activation and Reaction Kinetics Than Pristine Alloys" is published in the scientific journal Molecules. https://www.mdpi.com/1420-3049/25/10/2338

Contact

Dag Noréus, professor at the Department of Materials and Environmental Chemistry, Stockholm University.
Phone: 46-8-16 12 53
Email: dag.noreus@mmk.su.se

Stockholm University

Related Hydrogen Articles:

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.
Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.
Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.
Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.
Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.
World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.
Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.
Observing hydrogen's effects in metal
Microscopy technique could help researchers design safer reactor vessels or hydrogen storage tanks.
The 'Batman' in hydrogen fuel cells
In a study published in Nature on Jan. 31, researchers at the University of Science and Technology of China (USTC) report advances in the development of hydrogen fuel cells that could increase its application in vehicles, especially in extreme temperatures like cold winters.
Paving the way for more efficient hydrogen cars
Hydrogen-powered vehicles emit only water vapor from their tailpipes, offering a cleaner alternative to fossil-fuel-based transportation.
More Hydrogen News and Hydrogen Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.