Tracking fossil fuel emissions with carbon-14

June 01, 2020

Researchers from NOAA and the University of Colorado have devised a breakthrough method for estimating national emissions of carbon dioxide from fossil fuels using ambient air samples and a well-known isotope of carbon that scientists have relied on for decades to date archaeological sites.

In a paper published in the journal the Proceedings of the National Academy of Sciences, they report the first-ever national scale estimate of fossil-fuel derived carbon dioxide (CO2) emissions obtained by observing CO2 and its naturally occurring radioisotope, carbon-14, from air samples collected by NOAA's Global Greenhouse Gas Reference Network.

Carbon-14, or 14C, a very rare isotope of carbon created largely by cosmic rays, has a half-life of 5,700 years. The carbon in fossil fuels has been buried for millions of years and therefore is completely devoid of 14C. Careful laboratory analysis can identify the degree of 14C-depletion of the CO2 in discrete air samples, which reflects the contribution from fossil fuel combustion and cement manufacturing (which also has no 14C), otherwise known as the "fossil CO2" contribution. Knowing the location, date and time when the air samples were taken, the research team used a model of atmospheric transport to disentangle the CO2 variations due to fossil fuel combustion from other natural sources and sinks, and traced the man-made variations to the fossil CO2 sources at the surface.

A new method for evaluating inventories

"This is a new, independent, and objective method for evaluating emission inventories that is based on what we actually observe in the atmosphere," said lead author Sourish Basu, who was a CIRES scientist working at NOAA during the study. He is now a scientist at NASA's Goddard Space Flight Center in Maryland.

While the link between fossil CO2 emissions and atmospheric 14C has been known for many decades, the construction of a national-scale emission estimate based on atmospheric 14C required the simultaneous development of precise measurement techniques and an emissions estimation framework, largely spearheaded over the past 15 years by NOAA scientist John Miller and University of Colorado scientist Scott Lehman.

"Carbon-14 allows us to pull back the veil and isolate CO2 emitted from fossil fuel combustion," said Lehman, one of the paper's authors. "It provides us with a tracer we can track to sources on the ground. "We can then add these up and compare to other emissions estimates at various time and space scales"

Bottom-up vs. top-down

Accurately calculating emissions of carbon dioxide from burning fossil fuels has challenged scientists for years. The two primary methods in current use - "bottom up" inventories and "top down" atmospheric studies used in regional campaigns - each have their strengths and weaknesses.

"Bottom-up" estimates, such as those used in the EPA Inventory of U.S. Greenhouse Gas Emissions and Sinks, are developed by counting CO2 emissions from various processes and fuel types, and then scaling up emissions based on records of fossil fuel use. In contrast, "top-down" estimates are based on measured changes in the concentrations of emitted gases in the atmosphere and wind patterns connecting the surface source regions with the measurement locations.

Bottom-up inventories can provide more detail than top-down methods but their accuracy depends on the ability to track all emission processes and their intensities at all times, which is an intrinsically difficult task with uncertainties that are not readily quantified. Top-down studies are limited by the density of atmospheric measurements and our knowledge of atmospheric circulation patterns but implicitly account for all possible sectors of the economy that emit CO2

The team constructed annual and monthly top-down fossil CO2 emission estimates for the U.S. for 2010, the first year with sufficient atmospheric samples to provide robust results. As one point of comparison, they compared their numbers to bottom-up estimates from a recent U.S. Environmental Protection Agency's (EPA) report of 2010 emissions. The team's estimate of the US annual total 2010 emissions was 5 percent higher than EPA's central estimate. The new estimate is also significantly higher than those from other inventories commonly used in global and regional CO2 research. On the other hand, the atmospheric results appear to agree with a recent update of the Vulcan U.S. emissions data product developed by researchers at Northern Arizona University.

As these were the first estimates constructed using the new observing system, scientists cautioned that they should be considered provisional. Now they are busy applying the method to measurements from subsequent years, in order to determine if the differences they see are robust over time.

One of the benefits of this approach, according to the scientists, is that with an expanded 14C measurement network, there is the potential to calculate emissions from different regions - information that would augment EPA's national totals. States such as California and collections of states such as the members of the eastern Regional Greenhouse Gases Initiative have created their own greenhouse gas mitigation targets, and the ability to independently evaluate regional emissions using top-down methods would help evaluate regional emissions reduction efforts.

"Independent verification of annual and regional totals and multi-year trends using independent methods like this would promote confidence in the accuracy of emissions reporting, and could help guide future emissions mitigation strategies," said NOAA scientist John Miller.
-end-
The study was supported by NOAA, NASA, and the Department of Energy. Other members of the research team included scientists from Northern Arizona University and the University of California at Irvine.

NOAA Headquarters

Related Fossil Articles from Brightsurf:

Fossil shark turns in to mystery pterosaur
Lead author of the project, University of Portsmouth PhD student Roy Smith, discovered the mystery creature amongst fossil collections housed in the Sedgwick Museum of Cambridge and the Booth Museum at Brighton that were assembled when phosphate mining was at its peak in the English Fens between 1851 and 1900.

New fossil seal species rewrites history
An international team of biologists, led by Monash University, has discovered a new species of extinct monk seal from the Southern Hemisphere -- describing it as the biggest breakthrough in seal evolution in 70 years.

How to fix the movement for fossil fuel divestment
Bankers and environmentalists alike are increasingly calling for capital markets to play a bigger role in the war on carbon.

New fossil ape is discovered in India
A 13-million-year-old fossil unearthed in northern India comes from a newly discovered ape, the earliest known ancestor of the modern-day gibbon.

Fossil growth reveals insights into the climate
Panthasaurus maleriensis is an ancestor of today's amphibians and has been considered the most puzzling representative of the Metoposauridae.

Australian fossil reveals new plant species
Fresh examination of an Australian fossil -- believed to be among the earliest plants on Earth -- has revealed evidence of a new plant species that existed in Australia more than 359 Million years ago.

Tracking fossil fuel emissions with carbon-14
Researchers from NOAA and the University of Colorado have devised a breakthrough method for estimating national emissions of carbon dioxide from fossil fuels using ambient air samples and a well-known isotope of carbon that scientists have relied on for decades to date archaeological sites.

Rare lizard fossil preserved in amber
The tiny forefoot of a lizard of the genus Anolis was trapped in amber about 15 to 20 million years ago.

Reconstructing the diet of fossil vertebrates
Paleodietary studies of the fossil record are impeded by a lack of reliable and unequivocal tracers.

Fossil is the oldest-known scorpion
Scientists studying fossils collected 35 years ago have identified them as the oldest-known scorpion species, a prehistoric animal from about 437 million years ago.

Read More: Fossil News and Fossil Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.