Army Research Laboratory supporting Texas A&M research on armor performance

June 01, 2020

The United States Army Research Laboratory is lending support to a Texas A&M University research project investigating potential improvement of ballistic performance of armor materials.

The project, led by Dr. Justin Wilkerson, assistant professor and James J. Cain '51 Faculty Fellow II in the J. Mike Walker '66 Department of Mechanical Engineering, focuses on identifying what damaging effects could be caused by particular flaws -- known as vacancies -- in the atomic structure of aluminum.

Wilkerson's research paper on the topic, "Evolving structure-property relationships in metals with nonequilibrium concentrations of vacancies," was recently featured on the cover of the Journal of Applied Physics. The paper was co-authored with Wilkerson's former postdoctoral advisee Dr. Sara Adibi.

Although similar research has been conducted by Dr. Celia Reina and coworkers from the California Institute of Technology, Wilkerson's study delves deeper into the subject by calculating the effect of changes due to vacancies over time on the material's mechanical properties.

"Mechanical behavior of these materials could not be understood via the Lattice Kinetic Monte Carlo simulations alone, which was what had been done prior to this," said Wilkerson. "To take the next step forward, we made use of supercomputing facilities to conduct a suite of large-scale molecular dynamics simulations."

Atoms are arranged in a highly ordered pattern referred to as a crystal lattice, and if an atom is missing from a perfect lattice structure, this defect is called a vacancy. At high temperatures, the vacancies can come together forming vacancy clusters.

Wilkerson said a large concentration of vacancies in a material may be generated under shock loading which could impact ballistic performance metrics, including spall strength.

"The effect of vacancies on the mechanical behavior of materials on short timescales, such as microseconds, has remained largely unexplored," said Wilkerson. "Even on such short timescales, we find that vacancies may also play a significant role in the high-temperature failure of metals subject to very high tensile pressures."

A prospective idea from the findings is that it may be possible to use this knowledge to improve the ballistic performance of next-generation armors for the U.S. Army.

"Now that we better understand the importance of this mechanism to ballistic performance the next step is to develop material processing strategies that slow vacancy production rates in shocked materials," said Wilkerson.

Texas A&M University

Related Mechanical Engineering Articles from Brightsurf:

Best practices for mechanical ventilation in patients with ARDS, COVID-19
A team from pulmonary and critical care medicine at Michigan Medicine outlines 20 evidence-based practices shown to reduce time spent on a ventilator and death in patients with acute respiratory failure and acute respiratory distress -- conditions that have many overlaps with severe COVID-19.

How cells use mechanical tension sensors to interact with their environment
In a painstaking experiment, scientists suspended a single protein filament between two microscopic beads.

Mechanical forces of biofilms could play role in infections
Studying bacterial biofilms, EPFL scientists have discovered that mechanical forces within them are sufficient to deform the soft material they grow on, e.g. biological tissues, suggesting a ''mechanical'' mode of bacterial infection.

How mechanical forces nudge tumors toward malignancy
Researchers studying two forms of skin cancer identified a long-overlooked factor determining why some tumors are more likely to metastasize than others: the physical properties of the tissue in which the cancer originates.

Building mechanical memory boards using origami
Origami can be used to create mechanical, binary switches, and in Applied Physics Letters, researchers report the fabrication of such a paper device, using the Kresling pattern, that can act as a mechanical switch.

Not just light: The sensitivity of photoreceptors to mechanical stimuli is unveiled
''We thought we knew almost everything about photoreceptors, but we have proved that is not the case''.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Cell removal as the result of a mechanical instability
Researchers at Kanazawa University report in the Biophysical Journal that the process of cell removal from an epithelial layer follows from an inherent mechanical instability.

Researchers demonstrate transport of mechanical energy, even through damaged pathways
Researchers from the University of Illinois at Urbana-Champaign's Grainger College of Engineering have experimentally demonstrated a new way to transport energy even through wave-guides that are defective, and even if the disorder is a transient phenomenon in time.

Tissues protect their DNA under mechanical stress
Nuclei and genetic material deform.

Read More: Mechanical Engineering News and Mechanical Engineering Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to