Major Upgrade To Arecibo Observatory Passes Critical Milestone

June 01, 1996

World's largest radio-radar telescope is poised to open new windows to the universe: Eavesdrop on a cellular phone call on Venus; find a golf ball as far away as the moon ARECIBO, Puerto Rico -- The Arecibo Observatory, home of the world's largest radio-radar telescope, has moved close to completion of a major upgrade that makes it one of the most sensitive and powerful tools ever designed for astronomical studies.

The observatory, operated by Cornell University's National Astronomy and Ionosphere Center under a cooperative agreement with the National Science Foundation (NSF), on May 16 completed installation of a new system for focusing incoming radio waves that will open new doors to the universe.

On May 16, the 90-ton, 85-foot diameter Gregorian system enclosure was hoisted from the bottom of the 1,000-foot diameter reflector to its working position 450 feet above, on the azimuth arm. The lifting process took about two hours, starting in the pre-dawn mist at 6:10 a.m. The construction work, part of a $25 million upgrade of the Arecibo telescope financed by the NSF and NASA, was begun in 1993. COMSAT RSI of Sterling, Va., is prime contractor for the work.

Remember that big dish that appeared out of a lake, then was blown to bits in the climactic scenes of the James Bond movie Goldeneye? Well, the dish remains (although it doesn't rise from under water -- it's fixed in a huge sinkhole in the hills of northwest Puerto Rico), but the system suspended above the dish to focus the radiowaves collected by the 1,000-foot-diameter (305-meter) reflector has been radically changed.

Now, a new six-story, 90-ton dome houses a new reflector system, a combination of two radio mirrors and sensitive receiver systems. It is suspended 450 feet above the giant 1,000-foot reflector dish. The mirrors focus radio waves coming from distant objects in space, or radar signals that are sent out into space and bounce back from the surfaces of the planets and other bodies in the solar system. "First light" is expected by the end of August.

"We are delighted that we will soon have a new much more sensitive and versatile telescope," said Paul Goldsmith, director of the National Astronomy and Ionosphere Center and Cornell professor of astronomy. "It will open a new era of radio astronomical observations of pulsars, distant galaxies and our own galaxy. We are looking forward to a host of new discoveries." Also, "The new radar system will have a tremendous capability to image Earth-approaching asteroids and comets," said Don Campbell, associate director of NAIC, as a 1-km asteroid is set to pass within 2 million miles of Earth on May 25.

The upgrade includes a doubling to 1 megawatt of the power of the transmitter used for radar studies of the solar system, a 50-foot-high stainless steel mesh fence (called a ground screen) to reduce the effects of interfering radio noise emitted by the ground around the perimeter of the reflector dish, reinforcement of the existing 600-ton suspended structure and installation of additional supporting cables to carry the added weight of the dome. The fence was installed in 1993.

The upgrade gives the Arecibo telescope such better sensitivity: It could be used to listen into a cellular telephone call on Venus; the radar could detect a steel golf ball at the distance of the moon. The new system increases the telescope's sensitivity by a factor of about 20 for radar studies of the solar system -- comets, planets, moons and asteroids. Studies of the radio waves from distant galaxies, pulsars, quasars and other objects can be made 10 times faster with the new focusing system, and the much greater frequency coverage (300 MHz to 10,000 MHz) will open up new studies of molecules in star-forming regions of our own galaxy.

A spherical reflector such as the Arecibo dish does not focus radio waves to a point as does a parabolic satellite antenna, but the symmetry properties of a sphere mean that it is possible to "steer" the telescope to look in different directions by moving the focusing system rather than the entire 1,000-foot reflector. The original focusing system consisted of long, linear wave guide elements (the villain in Goldeneye fell from the bottom of one of these) which have many disadvantages; a different one is needed for each frequency, and they are very difficult to build, virtually impossible at frequencies above about 3,000 MHz.

The new system does it with mirrors, one about 80 feet in diameter, the other about 28 feet, called a Gregorian system. The mirrors are enclosed in the dome along with the new radar transmitter and microwave receivers. The whole structure is attached to trolleys moving on the 300-foot-long curved feed arm suspended above the dish.

Thus, the new Arecibo Observatory holds promise for decades of new discoveries, as it opens up new areas of research. Here is an example of some of the science that can be investigated:

Larger versions of the photos are available: and

Arecibo facts, statistics and important research accomplishmentsEDITORS:Photos of the radome installed on the azimuth arm are also available from the Cornell News Service.

A series of other downloadable photos showing radome construction is available at

Cornell University

Related Solar System Articles from Brightsurf:

Ultraviolet shines light on origins of the solar system
In the search to discover the origins of our solar system, an international team of researchers, including planetary scientist and cosmochemist James Lyons of Arizona State University, has compared the composition of the sun to the composition of the most ancient materials that formed in our solar system: refractory inclusions in unmetamorphosed meteorites.

Second alignment plane of solar system discovered
A study of comet motions indicates that the Solar System has a second alignment plane.

Pressure runs high at edge of solar system
Out at the boundary of our solar system, pressure runs high.

What a dying star's ashes tell us about the birth of our solar system
A UA-led team of researchers discovered a dust grain forged in a stellar explosion before our solar system was born.

What scientists found after sifting through dust in the solar system
Two recent studies report discoveries of dust rings in the inner solar system: a dust ring at Mercury's orbit, and a group of never-before-detected asteroids co-orbiting with Venus, supplying the dust in Venus' orbit.

Discovered: The most-distant solar system object ever observed
A team of astronomers has discovered the most-distant body ever observed in our solar system.

Discovery of the first body in the Solar System with an extrasolar origin
Asteroid 2015 BZ509 is the very first object in the Solar System shown to have an extrasolar origin.

First interstellar immigrant discovered in the solar system
A new study has discovered the first known permanent immigrant to our solar system.

A star disturbed the comets of the solar system in prehistory
About 70,000 years ago, when the human species was already on Earth, a small reddish star approached our solar system and gravitationally disturbed comets and asteroids.

Scientists detect comets outside our solar system
Scientists from MIT and other institutions, working closely with amateur astronomers, have spotted the dusty tails of six exocomets -- comets outside our solar system -- orbiting a faint star 800 light years from Earth.

Read More: Solar System News and Solar System Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to