Computer scientists develop tool to make the Internet of Things safer

June 02, 2014

Computer scientists at the University of California, San Diego, have developed a tool that allows hardware designers and system builders to test security- a first for the field. One of the tool's potential uses is described in the May-June issue of IEEE Micro magazine.

"The stakes in hardware security are high", said Ryan Kastner, a professor of computer science at the Jacobs School of Engineering at UC San Diego.

There is a big push to create the so-called Internet of Things, where all devices are connected and communicate with one another. As a result, embedded systems--small computer systems built around microcontrollers--are becoming more common. But they remain vulnerable to security breaches. Some examples of devices that may be hackable: medical devices, cars, cell phones and smart grid technology.

"Engineers traditionally design devices to be fast and use as little power as possible," said Jonathan Valamehr, a postdoctoral researcher in the Department of Computer Science and Engineering at UC San Diego. "Oftentimes, they don't design them with security in mind."

The tool, based on the team's research on Gate-level Information Flow Tracking, or GLIFT, tags critical pieces in a hardware's security system and tracks them. The tool leverages this technology to detect security-specific properties within a hardware system. For example, the tool can make sure that a cryptographic key does not leak outside a chip's cryptographic core.

There are two main threats in hardware security. The first is confidentiality. In some types of hardware, one can determine a device's cryptographic key based on the amount of time it takes to encrypt information. The tool can detect these so-called timing channels that can compromise a device's security. The second threat is integrity, where a critical subsystem within a device can be affected by non-critical ones. For example, a car's brakes can be affected by its CD player. The tool can detect these integrity violations as well.

Valamehr, Kastner, and Ph.D. candidate Jason Oberg started a company named Tortuga Logic to commercialize this technology. The company is currently working with two of the top semiconductor companies in the world. Their next step is to focus on medical devices, computers in cars, and military applications.

The team recently were awarded a $150,000 grant from the National Science Foundation to grow their business and further their research.
-end-
Tortuga Logic is a member of the Medical Device Innovation Safety and Security committee, a nonprofit professional organization and of the Vehicle Electrical System Security Committee.

University of California - San Diego

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.