Researchers discover two new groups of viruses

June 02, 2015

Researchers at the University of Bonn and the German Center for Infection Research (DZIF) have discovered two new groups of viruses within the Bunyavirus family in the tropical forest of Ivory Coast. Previously only five groups responsible for serious illnesses in humans and animals were known. Most are spread through blood-feeding insects. Based on the discovered viruses researchers conclude that the ancester to all bunyaviruses must have existed in arthropods such as insects. The results are now being published in the "Proceedings of the National Academy of Sciences" (PNAS).

The bunyavirus family includes five different groups of viruses which trigger serious illnesses in humans and animals and which can also cause significant damage to vegetables, such as tomatoes. The first viruses of this family were discovered in a place known as Bunyamwera in Uganda, from which they derive their name. "The most well-known bunyaviruses include, for example, the Rift Valley fever virus, which can cause febrile illnesses with severe bleeding in humans," says Dr. Sandra Junglen from the Bonn Institute of Virology, also affiliated with the German Center for Infection Research. In 2011, the "Schmallenberg virus" gained much attention: also a part of the Bunyavirus family and transmitted by gnats, it caused severe fetal malformations in ruminant animals including sheep in the German Sauerland region.

Not in Schmallenberg but instead in the African tropical forest of the Ivory Coast, where the virologist has been conducting research for more than ten years, she set off on the search for new viruses. Because most bunyaviruses are transmitted by blood-sucking insects, Dr. Junglen caught more than 7500 mosquitoes. Sorted according to species and sites of capture, the scientists combined the captured mosquitoes into 432 mixed samples. In 26 of these samples, the researchers discovered particles of unknown bunyaviruses.

Agents of human disease have developed from insect viruses

"These were two groups of as-yet-unknown viruses which we called Jonchet virus and Ferak virus," reports the virologist. The scientists obtained fragments of the viral genetic material from the insect samples and joined these fragments together like a puzzle, thus reconstructing the entire genome sequence. "That alone took four years," reported lead authors Marco Marklewitz and Florian Zirkel. During the comparison of the genetic information with other viruses, it was found that Jonchet and Ferak viruses are two phylogenetically independent bunyavirus lineages.

How dangerous are the two new groups of viruses - can they be easily transmitted to humans and animals? To answer these questions, the scientists went in a new direction: They performed infection trials in a large number of cell cultures at different temperature levels. While pathogenic bunyaviruses can multiply at temperatures that include the human body temperature, growth of Jonchet and Ferak viruses ceases above 32 degrees Celsius, making it unlikely that the viruses infect humans or other vertebrates. "In addition, we reconstructed the evolutionary history of host associations of the entire family of viruses, demonstrating for the first time that viruses affecting vertebrates developed from arthropod-specific viruses," says the researcher from the University of Bonn Hospital.

Simplified test to test novel viruses for risk of human infection

Triggered by epidemics such as SARS and Ebola, virologists are now reaching out to discover the plethora of unknown viruses lurking in natural reservoirs such as insects, in an attempt to forecast pandemic risks. „We hope our temperature test for estimating the risk of vertebrate infection can be useful for assessing other viruses that keep being discovered," says Dr. Junglen.
-end-
Publication: "Evolutionary and phenotypic analysis of live virus isolates suggests arthropod origin of a pathogenic RNA virus family", Proceedings of the National Academy of Sciences (PNAS), DOI: 10.1073/pnas.1502036112

Media contact information:

Dr. Sandra Junglen
Institute of Virology
University of Bonn Medical Centre
German Center for Infection Research (DZIF)
Tel. ++49-(0)228-28713068
E-Mail: Junglen@virology-bonn.de
Internet: http://www.virology-bonn.de

University of Bonn

Related Viruses Articles from Brightsurf:

Sorting out viruses with machine learning
Researchers at Osaka University created a machine-learning system to identify single viral particles that cause respiratory diseases, including coronavirus, using silicon nanopores.

The rafts used by viruses
The study may suggest new strategies to limit virus attacks and prevent or combat diseases like Sars and Covid-19 based on biomedical and engineering principles.

Animals keep viruses in the sea in balance
A variety of sea animals can take up virus particles while filtering seawater for oxygen and food.

Hundreds of novel viruses discovered in insects
New viruses which cause diseases often come from animals. Well-known examples of this are the Zika virus transmitted by mosquitoes, bird flu viruses, as well as the MERS virus which is associated with camels.

First video of viruses assembling
For the first time, researchers have captured images of the formation of individual viruses, offering a real-time view into the kinetics of viral assembly.

Plant viruses may be reshaping our world
A new review article appearing in the journal Nature Reviews Microbiology highlights the evolution and ecology of plant viruses.

Checkmate for hepatitis B viruses in the liver
Researchers at Helmholtz Zentrum M√ľnchen and the Technical University of Munich, working in collaboration with researchers at the University Medical Center Hamburg-Eppendorf and the University Hospital Heidelberg, have for the first time succeeded in conquering a chronic infection with the hepatitis B virus in a mouse model.

How viruses outsmart their host cells
Viruses depend on host cells for replication, but how does a virus induce its host to transcribe its own genetic information alongside that of the virus, thus producing daughter viruses?

Mobile, instant diagnosis of viruses
In a first for plant virology, a team from CIRAD recently used nanopore technology to sequence the entire genomes of two yam RNA viruses.

How ancient viruses got cannabis high
THC and CBD, bioactive substances produced by cannabis and sought by medical patients and recreational users, sprung to life thanks to ancient colonization of the plant's genome by viruses, U of T researchers have found.

Read More: Viruses News and Viruses Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.