Differences in how ALS affects eye and limb muscles act as clue

June 02, 2016

In an effort to better understand what happens during Amyotrophic Lateral Sclerosis (ALS), researchers at Umeå University in Sweden have compared the impact of ALS on the eye and limb muscles. They have focused on specific proteins that are important for muscle-nerve contacts. The eye muscles appear to be better equipped to maintain their muscle-nerve contacts and are thereby less affected.

"While skeletal muscles are severely affected in ALS, eye muscles are far less affected than limb muscles. In our research, we have been looking at why," says Vahid M. Harandi, doctoral student at the Department of Integrative Medical Biology and the Department of Clinical Sciences, Ophthalmology. "What we found were intrinsic differences between limb and eye muscles regarding expression of certain signal proteins involved in the development and vitality of neurons. These differences, together with the fact that the neuromuscular junctions of eye muscles seem better able to preserve these signal proteins, known as neurotrophic factors, might play a role in the preservation of eye muscle function during ALS."

ALS is typically a late-onset neurodegenerative disease, leading to progressive muscle wasting, speech and swallowing difficulties. Death typically occurs within 3 to 5 years of symptom onset, mainly due to respiratory failure. In Sweden, the average number of new cases of ALS per year is 2.4 per 100,000 inhabitants but due to the short duration of the disease there are approximately 6-9 patients with ALS per 100,000 inhabitants, at any time.

The overall objective of Vahid M. Harandi's research was to explore how ALS develops (pathophysiologically) from a muscle perspective. In his research, Vahid M. Harandi has focused on the expression and distribution of key neurotrophic factors and so-called Wnt proteins in eye and limb muscles. He has investigated how possible changes might be related both to ALS and ageing. Both neurotrophic factors and Wnt protein alterations have been implicated in several neuromuscular and neurological diseases, including ALS.

"ALS has traditionally been considered as primarily a motor neuron disease. However, accumulating data indicates that loss of contact between the nerve axons and the muscle fibres occurs early, long before the death of motor neurons," explains Vahid M. Harandi. "This means that muscle fibres may be what's initiating the motor neuron degeneration. These findings have led to a changing focus in ALS research from motor neurons alone to also include the muscle fibres and the neuromuscular junctions."
Vahid M. Harandi is a doctoral student at the Department of Integrative Medical Biology (IMB). His doctoral dissertation is a collaboration between IMB and the Department of Clinical Sciences, Ophthalmology. Vahid M. Harandi earned his Bachelor's degree in Nutrition in Iran and his Master's degree in Biomedicine at Skövde University in Sweden. He originates from Tehran, Iran.

Umea University

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.