Nav: Home

Genetic diversity important for plant survival when nitrogen inputs increase

June 02, 2016

Genetic diversity is important for plant species to persist in Northern forests that experience human nitrogen inputs. This is one conclusions that Franziska Bandau at Umeå University in Sweden draws.

Nitrogen is an essential nutrient for plants. In Northern forests, nitrogen availability to plants is limited, but plant species growing in these forests are well adapted to the low nitrogen conditions.

However, nowadays humans are increasingly adding nitrogen to forests. Through the burning of fossil fuels, fertilizer production, and agriculture men release large amounts of nitrogen into the atmosphere, which is transported by winds, and deposited in the environment tens or even thousands of kilometers away from the pollution source. Besides these unintentional nitrogen inputs into forests, land owners also intentionally fertilize their forests to increase their wood harvest.

These two forms of human nitrogen input can have numerous effects. One consequence can be the loss of plant species, which in turn reduces biodiversity. There are two mechanisms believed to cause these plant species losses. First, extra nitrogen may change how plants compete with each other, and plant species that can use extra nitrogen faster may replace plant species that are well adapted to generally low nitrogen conditions. Secondly, additional nitrogen can cause changes in leaf chemistry, which in turn influences how strongly plants are attacked by natural enemies, i.e. insects or fungi.

In her dissertation, Franziska Bandau performed a series of fertilization experiments with the model tree species aspen to investigate which effects human nitrogen inputs could have on genetically diverse plant individuals. Franziska Bandau grew a number of aspen individuals that possessed varying abilities to produce certain chemical compounds in their leaves, called condensed tannins. These compounds have been described to potentially protect plants from insect attacks by making leaves un-tasty or un-nutritional, and to defend plants against some pathogenic fungi. During her work, Franziska Bandau found that plants that obtained nitrogen doses simulating atmospheric deposition and forest fertilization were generally more damaged by insects and fungi than plants that did not receive any additional nitrogen, but plants with a high-tannin production were always less damaged than low-tannin plants.

"I also observed that aspen with a genetically pre-determined, high tannin production were restricted in growth at ambient nitrogen and atmospheric deposition levels, but that this growth constraint was removed, when plants received nitrogen doses corresponding to forest fertilization rates, and when natural enemy levels were high," says Franziska Bandau.

As competition and changes in plant-enemy interactions have been suggested to drive plant species losses, both low- and high-tannin plants could potentially be favoured under altered nitrogen conditions. When natural enemies are key drivers of vegetation change, high-tannin plants would be more likely to survive. However, when competition drives vegetational change, low-tannin plants that grow more under slightly elevated nitrogen conditions than high-tannin plants, would probably perform better.

"But as both nitrogen conditions and enemies pressure vary a lot across space and time, genetically diverse populations would have the highest chances to persist in environments that experience human nitrogen inputs," says Franziska Bandau says.
Franziska grew up in Berlin, Germany. She studied forest management at the University for Sustainable Development in Eberswalde, and during her undergraduate studies she participated in an Erasmus exchange with the Swedish University of Agricultural Sciences in Umeå. After receiving her Master's degree, she worked in a public forest enterprise in Germany, before she returned to Umeå for her doctoral studies.

Umea University

Related Nitrogen Articles:

Fixing the role of nitrogen in coral bleaching
A unique investigation highlights how excess nitrogen can trigger coral bleaching in the absence of heat stress.
Universities release results on nitrogen footprints
Researchers have developed a large-scale method for calculating the nitrogen footprint of a university in the pursuit of reducing nitrogen pollution, which is linked to a cascade of negative impacts on the environment and human health, such as biodiversity loss, climate change, and smog.
A battery prototype powered by atmospheric nitrogen
As the most abundant gas in Earth's atmosphere, nitrogen has been an attractive option as a source of renewable energy.
Northern lakes respond differently to nitrogen deposition
Nitrogen deposition caused by human activities can lead to an increased phytoplankton production in boreal lakes.
Researchers discover greenhouse bypass for nitrogen
An international team discovers that production of a potent greenhouse gas can be bypassed as soil nitrogen breaks down into unreactive atmospheric N2.
More Nitrogen News and Nitrogen Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...