Nav: Home

DIY crystal-makers get refurbished online cookbook

June 02, 2017

DURHAM, N.C. -- In response to popular demand, materials scientists at Duke University have resurrected an online cookbook of crystalline structures that started when the World Wide Web was Netscape Navigator and HTML 1.0.

In 1995, Michael Mehl, then a scientist at the U.S. Naval Research Laboratory, began collecting, cataloguing and sharing information about crystalline structures on a basic website for colleagues.

Researchers needed a reference catalogue to guide their efforts because crystals form hundreds of different structures in nature. Chemists use crystals as handy building blocks for new materials because of their rigid, ordered molecular shapes, which help determine a material's properties.

Mehl's website, called Crystal Lattice Structures, provided detailed information that, while available from other sources, was more useful to researchers unfamiliar with crystallographic conventions. If crystalline databases were cookbooks and each crystal structure a recipe, researchers had written other references suitable for accomplished French chefs with specialized training. Crystal Lattice Structures, on the other hand, was for your average home cook.

"The library showed how crystallography relates to crystals in the real world," explained Mehl, now at the United States Naval Academy. "It also gave a broad overview of structures seen experimentally, which is always a good place to start looking for something new."

Mehl took the website down in 2010, however, due in part to security upgrades made at NRL, and because the website's haphazard growth over 15 years had left its organization unnecessarily complicated and its entries un-standardized.

"There were a lot of people in the community asking where the database had gone and whether or not it could be brought back," said Stefano Curtarolo, professor of mechanical engineering and materials science at Duke. "We decided to put all the information together into a paper and also bring back the website in a more robust and open-source version."

With Mehl's help, Curtarolo and his team have resurrected Crystal Lattice Structures, launching a new and improved online catalogue and publishing a paper containing all of its data (the first of a longer collection). The paper appeared online on May 22 in Computational Materials Science.

The paper, which took more than a year to compile, contains 288 entries for various crystalline structures. Each entry contains data on the symmetry of the structure, its crystalline properties and the shape of a unit cell. It also contains generic mathematic equations describing each atom's placement, rather than providing that information in a specialized form as other databases typically do.

"Having the equations for the atomic placements written out gives more flexibility to include slight variations and to specifically tune each structure," said Cormac Toher, assistant research professor of mechanical engineering and materials science at Duke. "We're also going to have a 3D viewer of the structures at the top of each entry so that people can see the structures at different angles."

Making the new website even more robust, each entry is directly linked to the Duke Center for Materials Genomics AFLOW library -- an online database of two- and three-element compounds that lets users predict the properties of yet-to-be-discovered materials. With the incorporation of the new database, users can simply choose which elemental atoms to place at which positions in any of the 288 crystalline structures, and the program will compute the resulting material's likely properties.

"We had to decide what format to present the information in, get all of the data, and 800 pages later, make sure there weren't any errors," said David Hicks, a graduate student in Curtarolo's laboratory. "And then implementing everything within AFLOW took another 288 files of C++ coding. It was a lot of work, but we think it will be a very useful resource for the community."
-end-
Support for this research was provided by the Department of Defense Office of Naval Research (N00014-13-1-0635, N00014-15-1-2863, N00014-16-1-2781) and the Department of Energy (DE-AC02-05CH11231).

"The AFLOW Library of Crystallographic Prototypes: Part 1," Michael J. Mehl, David Hicks, Cormac Toher, Ohad Levy, Robert M. Hanson, Gus Hart, Stefano Curtarolo. Computational Materials Science, 2017. DOI: 10.1016/j.commatsci.2017.01.017

Duke University

Related Crystals Articles:

New photonic liquid crystals could lead to next-generation displays
A new technique to change the structure of liquid crystals could lead to the development of fast-responding liquid crystals suitable for next generation displays -- 3D, augmented and virtual reality -- and advanced photonic applications such as mirrorless lasers, bio-sensors and fast/slow light generation, according to an international team of researchers from Penn State, the Air Force Research Laboratory and the National Sun Yat-sen University, Taiwan.
The secret behind crystals that shrink when heated
Scientists at Brookhaven Lab have new experimental evidence and a predictive theory that solves a long-standing materials science mystery: why certain crystalline materials shrink when heated.
Engineered protein crystals make cells magnetic
If scientists could give living cells magnetic properties, they could perhaps manipulate cellular activities with external magnetic fields.
Appreciating the classical elegance of time crystals
Structures known as 'time crystals' -- which repeat in time as conventional crystals repeat in space -- have recently captured the interest and imagination of researchers across disciplines.
Making and controlling crystals of light
EPFL scientists have shown how light inside optical on-chip microresonators can be crystallized in a form of periodic pulse trains that can boost the performance of optical communication links or endow ultrafast LiDAR with sub-micron precision.
From crystals to glasses: a new unified theory for heat transport
Theoretical physicists from SISSA and the UCDavis lay brand new foundations to heat transport in materials, which finally allow crystals, polycrystalline solids, alloys, and glasses to be treated on the same solid footing.
How to trick electrons to see the hidden face of crystals
The 3D analysis of crystal structures requires a full 3D view of the crystals.
Science snapshots: Chromosomes, crystals, and drones
From Berkeley Lab: exploring human origins in the uncharted territory of our chromosomes; scientists grow spiraling new material; drones will fly for days with this new technology
Probing semiconductor crystals with a sphere of light
Tohoku University researchers have developed a technique using a hollow sphere to measure the electronic and optical properties of large semiconducting crystals.
Dowsing for electric fields in liquid crystals
Nematic liquid crystals can be oriented in a curious way termed the 'dowser texture', which is sensitive to external conditions.
More Crystals News and Crystals Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab