Using facial recognition technology to continuously monitor patient safety in the ICU

June 02, 2019

A team of Japanese scientists has used facial recognition technology to develop an automated system that can predict when patients in the intensive care unit (ICU) are at high risk of unsafe behaviour such as accidentally removing their breathing tube, with moderate (75%) accuracy.

The new research, being presented at this year's Euroanaesthesia congress (the annual meeting of the European Society of Anaesthesiology) in Vienna, Austria (1-3 June), suggests that the automated risk detection tool has the potential as a continuous monitor of patient's safety and could remove some of the limitations associated with limited staff capacity that make it difficult to continuously observe critically-ill patients at the bedside.

"Using images we had taken of a patient's face and eyes we were able to train computer systems to recognise high-risk arm movement", says Dr Akane Sato from Yokohama City University Hospital, Japan who led the research.

"We were surprised about the high degree of accuracy that we achieved, which shows that this new technology has the potential to be a useful tool for improving patient safety, and is the first step for a smart ICU which is planned in our hospital."

Critically ill patients are routinely sedated in the ICU to prevent pain and anxiety, permit invasive procedures, and improve patient safety. Nevertheless, providing patients with an optimal level of sedation is challenging. Patients who are inadequately sedated are more likely to display high-risk behaviour such as accidentally removing invasive devices.

The study included 24 postoperative patients (average age 67 years) who were admitted to ICU in Yokohama City University Hospital between June and October 2018.

The proof-of-concept model was created using pictures taken by a camera mounted on the ceiling above patients' beds. Around 300 hours of data were analysed to find daytime images of patients facing the camera in a good body position that showed their face and eyes clearly.

In total, 99 images were subject to machine learning--an algorithm that can analyse specific images based on input data, in a process that resembles the way a human brain learns new information. Ultimately, the model was able to alert against high-risk behaviour, especially around the subject's face with high accuracy.

"Various situations can put patients at risk, so our next step is to include additional high-risk situations in our analysis, and to develop an alert function to warn healthcare professionals of risky behaviour. Our end goal is to combine various sensing data such as vital signs with our images to develop a fully automated risk prediction system", says Dr Sato.

The authors note several limitations including that more images of patients in different positions are needed to improve the generalisability of the tool in real life. They also note that monitoring of the patient's consciousness may improve the accuracy in distinguishing between high-risk behaviour and voluntary movement.
-end-


ESA (European Society of Anaesthesiology)

Related Technology Articles from Brightsurf:

December issue SLAS Technology features 'advances in technology to address COVID-19'
The December issue of SLAS Technology is a special collection featuring the cover article, ''Advances in Technology to Address COVID-19'' by editors Edward Kai-Hua Chow, Ph.D., (National University of Singapore), Pak Kin Wong, Ph.D., (The Pennsylvania State University, PA, USA) and Xianting Ding, Ph.D., (Shanghai Jiao Tong University, Shanghai, China).

October issue SLAS Technology now available
The October issue of SLAS Technology features the cover article, 'Role of Digital Microfl-uidics in Enabling Access to Laboratory Automation and Making Biology Programmable' by Varun B.

Robot technology for everyone or only for the average person?
Robot technology is being used more and more in health rehabilitation and in working life.

Novel biomarker technology for cancer diagnostics
A new way of identifying cancer biomarkers has been developed by researchers at Lund University in Sweden.

Technology innovation for neurology
TU Graz researcher Francesco Greco has developed ultra-light tattoo electrodes that are hardly noticeable on the skin and make long-term measurements of brain activity cheaper and easier.

April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.

Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.

Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.

The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).

Read More: Technology News and Technology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.