Smart molecules could be key to computers with 100-times bigger memories

June 02, 2020

Computer hard drives of the future could be made up of smart molecules.

Researchers have discovered a single molecule 'switch' that can act like a transistor and offers the potential to store binary information - such as the 1s and 0s used in classical computing.

The molecule is around five square nanometres in size. This means that more than one billion of them would fit onto the cross-section of a human hair.

The international team of scientists behind the breakthrough believe that molecules like the ones they have discovered could offer information density of around 250 terabits per square inch - which is around 100 times the storage density of current hard drives.

Although the researchers do not expect that the particular molecules they discovered will be used in real hard drives, the study is an important proof of concept that brings us closer to the brave new world of true molecular electronics.

In the study, molecules of an organic salt can be switched using a small electrical input to appear either bright or dark - providing binary information. Crucially, this information can be written, read and erased, at room temperature and in normal air pressures. These are important characteristics for practical application of the molecules in computing storage devices. Most previous research into molecular electronics for similar applications has been conducted in vacuum and at very low temperatures.

Dr Stijn Mertens, Senior Lecturer in Electrochemical Surface Science at Lancaster University and lead researcher on the study, said: "There is an entire list of properties that a molecule has to possess to be useful as a molecular memory. Apart from being switchable in both directions under ambient conditions, it has to be stable for a long time in the bright and dark state, and also spontaneously form highly ordered layers that are only one molecule thick, in a process called self-assembly. Ours is the first example that combines all these features in the same molecule."

In laboratory experiments, the research team used small electric pulses in a scanning tunnelling microscope to switch individual molecules from bright to dark. They were also able to read and erase the information afterwards, at the press of a button.

During the switching, the electric pulse changes the way the cation and the anion in the organic salt are stacked together, and this stacking causes the molecule to appear either bright or dark. Apart from the switching itself, also the spontaneous ordering of the molecules is crucial: through self-assembly, they find their way into a highly ordered structure (a two-dimensional crystal), without the need for expensive manufacturing tools as is the case in currently used electronics.

"Because chemistry allows us to make molecules with sophisticated functions in enormous numbers and with atomic precision, molecular electronics may have a very bright future," says Dr Mertens.
-end-
The research is detailed in the paper 'Ambient bistable single dipole switching in a molecular monolayer', which has been published by the journal Angewandte Chemie.

The paper's authors are: Kang Cui, from KU Leuven and the University of Jinan; Kunal Mali and Steven De Feyter of KU Leuven; Dongqing Wu, Xinliang Feng and Klaus Müllen of the Max Planck Institute for Polymer research; Michael Walter of the Freiburg Centre for Interactive Materials and Bioinspired Technologies and Fraunhofer IWM; Stijn Mertens of KU Leuven and Lancaster University.

This work was supported by the Fund for Scientific Research-Flanders (FWO-Vlaanderen), by KU Leuven and by the Austrian Science Fund (FWF).

DOI: doi.org/10.1002/anie.202004016

Lancaster University

Related Molecules Articles from Brightsurf:

Finally, a way to see molecules 'wobble'
Researchers at the University of Rochester and the Fresnel Institute in France have found a way to visualize those molecules in even greater detail, showing their position and orientation in 3D, and even how they wobble and oscillate.

Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.

Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.

How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.

Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.

Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.

The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.

Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.

Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.

Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.

Read More: Molecules News and Molecules Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.