Scientist captures new images of Martian moon Phobos to help determine its origins

June 02, 2020

Christopher Edwards, assistant professor in NAU's Department of Astronomy and Planetary Science, just processed new images of the Martian moon Phobos that give scientists insight into the physical properties of the moon and its composition. The images of the small moon, which is about 25 kilometers (15 miles) in diameter, were captured by NASA's 2001 Mars Odyssey orbiter. When reviewed in combination with three previously released images, these new images could ultimately help settle the debate over whether the planetary body is a "captured asteroid"--pulled into perpetual orbit around Mars--or an ancient chunk of Mars blasted off the surface by a meteorite impact.

Along with scientists at NASA's Jet Propulsion Lab and Arizona State University, Edwards used the Thermal Emission Imaging System (THEMIS) onboard the 2001 Mars Odyssey orbiter to capture the images from about 6,000 kilometers (3,700 miles) above the moon's surface to measure temperature variations during different phases--waxing, waning and full:Edwards has been a part of the THEMIS team since 2003. All of the THEMIS infrared images are colorized and overlain on THEMIS visible images taken at the same time, except for the eclipse image, which is overlain on a synthetic visible image of what Phobos would have looked like if it hadn't been in complete shadow.

"The THEMIS instrument is designed to look at the composition and physical properties of the surface of Mars under various conditions using its multi-wavelength visible and infrared cameras," Edwards said.

From the new images, he said, "We're seeing that the surface of Phobos is relatively uniform and made up of very fine-grained materials. These observations are also helping to characterize the composition of Phobos, which appears to be mostly basaltic. Future observations will provide a more complete picture of the temperature extremes on the moon's surface."

Odyssey is the longest-operating spacecraft around Mars, and has been orbiting the Red Planet for more than 18 years.

"In an effort to continue advancing new science from the Odyssey mission as it matures," Edwards said, "a couple of years ago we proposed we could look at Phobos as part of our extended mission proposal. That requires a BIG spacecraft maneuver, rotating it 180 degrees into a geometry in which it was never intended to operate."

"As far as Phobos goes," he said, "its origins are enigmatic. The orbit it is in is not very stable, and some scientists have proposed that the moon has been destroyed and reformed multiple times because of its orbital position. It also turns out that the orbit's exact geometry makes it hard to capture--so some teams have proposed it is derived from Mars. How that happened is not clear, either! Perhaps it's from a big meteorite impact that ejected material into the orbit, and the material grouped together to form Phobos. So that's why we're looking for the physical properties of the surface, which might help identify locations where we could see the primary composition and not just the fine-grained dust."

Edwards added, "JAXA, Japan's space agency, is sending a whole mission to investigate Phobos and Diemos (Mars' other moon) called the Martian Moons eXploration (MMX), so we're providing some good reconnaissance data for that upcoming mission!"

Northern Arizona University

Related Mars Articles from Brightsurf:

Water on ancient Mars
A meteorite that originated on Mars billions of years ago reveals details of ancient impact events on the red planet.

Surprise on Mars
NASA's InSight mission provides data from the surface of Mars.

Going nuclear on the moon and Mars
It might sound like science fiction, but scientists are preparing to build colonies on the moon and, eventually, Mars.

Mars: Where mud flows like lava
An international research team including recreated martian conditions in a low-pressure chamber to observe the flow of mud.

What's Mars made of?
Earth-based experiments on iron-sulfur alloys thought to comprise the core of Mars reveal details about the planet's seismic properties for the first time.

The seismicity of Mars
Fifteen months after the successful landing of the NASA InSight mission on Mars, first scientific analyses of ETH Zurich researchers and their partners reveal that the planet is seismically active.

Journey to the center of Mars
While InSight's seismometer has been patiently waiting for the next big marsquake to illuminate its interior and define its crust-mantle-core structure, two scientists, have built a new compositional model for Mars.

Getting mac and cheese to Mars
Washington State University scientists have developed a way to triple the shelf life of ready-to-eat macaroni and cheese, a development that could have benefits for everything from space travel to military use.

Life on Mars?
Researchers from Hungary have discovered embedded organic material in a Martian meteorite found in the late 1970s.

New evidence of deep groundwater on Mars
Researchers at the USC Arid Climate and Water Research Center (AWARE) have published a study that suggests deep groundwater could still be active on Mars and could originate surface streams in some near-equatorial areas on Mars.

Read More: Mars News and Mars Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to