Bureau Of Missing Masses

June 02, 1997

One of the most intriguing mysteries of astrophysics is the so-called "missing mass" problem: the mass of heavenly bodies as estimated on the basis of how much light they emit is vastly smaller than their mass as calculated through Newton's laws of gravity and motion.

A standard explanation for this conundrum is the supposed existence of invisible or "dark" matter that does not emit light or other radiation and therefore has so far escaped detection. Prof. Mordechai Milgrom of the Weizmann Institute's Condensed Matter Physics Department has proposed a radically different explanation.

According to Milgrom, the mystery disappears if we modify Newton's laws when dealing with gigantic galactic systems. In a study reported in the Astrophysical Journal (March 20, 1997, Vol. 478, No. 1), Milgrom provides new evidence for this theory, and applies it to the largest definable bodies of mass known to exist - galaxy superclusters having the form of long threads and referred to as large-scale filaments.

Milgrom maintains that Newtonian physics works fine for celestial bodies such as planets and stars, but not for more complex groupings of these bodies. For example, according to Newton's law of inertia, the force (F) required to produce any level of acceleration (a) of a body of mass (m) is equal to m times a, or F = ma. Milgrom claims that for very small accelerations - like those in complex heavenly configurations such as galaxies - force is proportional to the square of the acceleration and not to just the acceleration itself.

These and other proposed modifications of Newtonian physics would have a major impact on inquiries into the origin and composition of the universe.

In previous studies Milgrom's calculations were applied to galaxies (measuring tens of thousands of light years across), galaxy clusters (a few million light years in diameter) and galaxy superclusters (some 10 million light years in diameter). In the latest study, his calculations are extended to the large-scale filaments, which are tightly packed bunches of galaxy superclusters with a length of some 200 million light years each. If the mass of such bodies is determined in accordance with Milgrom's theory, referred to as MOdified Nonrelativistic Dynamics, then it is possible to account for all the matter estimated on the basis of the light they emit.

The Weizmann Institute of Science is a major center of scientific research and graduate study located in Rehovot, Israel This publication, as well as other information on the Weizmann Institute, is posted on the World Wide Web at http://www.weizmann.ac.il, and news releases are also available at http:/www.eurekalert.org
-end-


American Committee for the Weizmann Institute of Science

Related Light Articles from Brightsurf:

Light from rare earth: new opportunities for organic light-emitting diodes
Efficient and stable blue OLED is still a challenge due to the lack of emitter simultaneously with high efficiency and short excited-state lifetime.

Guiding light: Skoltech technology puts a light-painting drone at your fingertips
Skoltech researchers have designed and developed an interface that allows a user to direct a small drone to light-paint patterns or letters through hand gestures.

Painting with light: Novel nanopillars precisely control intensity of transmitted light
By shining white light on a glass slide stippled with millions of tiny titanium dioxide pillars, researchers at the National Institute of Standards and Technology (NIST) and their collaborators have reproduced with astonishing fidelity the luminous hues and subtle shadings of 'Girl With a Pearl Earring.'

Seeing the light: Researchers combine technologies for better light control
A new technology that can allow for better light control without requiring large, difficult-to-integrate materials and structures has been developed by Penn State researchers.

A different slant of light
Giant clams manipulate light to assist their symbiotic partner.

New light for plants
Scientists from ITMO in collaboration with their colleagues from Tomsk Polytechnic University came up with an idea to create light sources from ceramics with the addition of chrome: the light from such lamps offers not just red but also infrared (IR) light, which is expected to have a positive effect on plants' growth.

Scientists use light to accelerate supercurrents, access forbidden light, quantum world
Iowa State's Jigang Wang continues to explore using light waves to accelerate supercurrents to access the unique and potentially useful properties of the quantum world.

The power of light
As COVID-19 continues to ravage global populations, the world is singularly focused on finding ways to battle the novel coronavirus.

Seeing the light: MSU research finds new way novae light up the sky
An international team of astronomers from 40 institutes across 17 countries found that shocks cause most the brightness in novae.

Seeing the light: Astronomers find new way novae light up the sky
An international team of researchers, in a paper published today in Nature Astronomy, highlights a new way novae light up the sky: this is shocks from explosions that create the novae that cause most of the their brightness.

Read More: Light News and Light Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.