Nav: Home

Albany high school student adds to understanding of breast cancer gene

June 03, 2004

A high school student from Albany, New York, has made a significant contribution toward understanding how mutations to a gene called BRCA-1 contributes to hereditary breast cancer.

Meaghan Figge, a sophomore at Albany Academy for Girls, published her results in the June issue of Cancer Epidemiology Biomarkers and Prevention, detailing the likely sites for BRCA-1 mutations leading to breast cancer. Figge is a student member of the American Association for Cancer Research, which publishes CEBP.

Figge pursued her research in memory of her grandmother, Helen Luciw, who died from breast cancer at age 64. Meaghan was in the fourth grade at the time, and in the years since, wondered whether screening methods other than the mammogram that detected her grandmother's tumor could diagnose cancer at an earlier stage. Her curiosity led her to the literature biomedical research where she learned about BRCA-1, which under normal circumstances, acts to suppress tumors.

"I was curious about BRCA-1 gene," Figge recalled. "On my own time, I read literature and did independent science research at my school to learn all I could about how this gene was related to breast cancer."

Figge learned that normally, the BRCA-1 protein acts to suppress breast and ovarian tumors in women.

But when the genetic code for BRCA-1 is errantly altered, the gene may lose its ability to suppress tumors.

"Some women inherit abnormal forms of BRCA-1 and are at an increased risk of developing breast or ovarian cancer," she said.

The abnormal forms of the gene result in a protein form of BRCA-1 that contains amino acid substitutions that differ from the normal gene. Changes in the amino acid composition of the BRCA-1 protein stem from alterations in the genetic sequence of nucleotides that make up the coding for the gene, which is part of each woman's unique DNA makeup.

Although only five to 10 percent of all breast cancer cases are linked to inherited genes, women with abnormal BRCA-1 genes have as much as almost 90 percent more risk of developing breast cancer during their lifetime. Half of all hereditary cases of breast cancer are associated with abnormal BRCA-1 genes.

The BRCA-1 gene is not unique to humans. The scientific literature already documents that the gene sequence for BRCA-1 remains similar across a number of mammalian species. Humans and dogs share about 96 percent of the same coding sequence within the gene, while humans and rodents such as mice and rats have less consistency in gene sequence--about 65 percent of the genetic coding is similar.

Figge considered whether the amino acids that were encoded by the conserved portion of the BRCA-1 gene found in the various species served as potential mutations sites leading to loss of function of the gene and increased risk for breast cancer for the person carrying the gene.

Under the guidance of her mentor, chemistry teacher, and manuscript co-author, Lynda Blankenship, Figge examined 246 different BRCA-1 sequence mutations found in humans considered at high risk for breast or ovarian cancer. The genetic information for those people was provided from many different clinical settings and compiled in the NIH Breast Cancer Information Database--a repository of genetic sequences for a multitude of genes found in breast cancer patients.

Figge's analysis of the NIH data revealed that among the known BRCA-1 mutations, sites within the genetic coding that were likely targets of mutation were the same sites conserved among humans, dogs, rats and mice. Furthermore, Figge documented that among the conserved amino acids that make up the BRCA-1 protein in the four species, the amino acids that were most likely to be mutated were those that are hydrophobic. Mutated BRCA-1 proteins that exchange hydrophobic amino acid residues for more water-loving types of amino acids may undergo structural changes that lead to loss of function. The mutations found in the abnormal BRCA-1 versions may lead to proteins that are bent out of shape and unable to perform as tumor suppressers.

"Perhaps these missense mutations disturb important features of the BRCA-1 protein and play a role in breast and ovarian cancer formation," Figge said.

In addition to her current publication, Figge entered her research last year at the 13th annual Greater Capital Region Science and Engineering Fair and Science Congress at Rensselaer Polytechnic Institute. Her science was deemed worthy of advancing to the Intel International Science and Engineering Fair in May 2004 in Cleveland, Ohio. At the Intel fair, Figge won a special first place prize from the Endocrine Society.

As a contribution to the pool of knowledge upon which researchers build additional understanding of biomedical science, Figge's discovery may help clinicians determine the level of risk for a woman who carries specific versions of mutated BRCA-1 gene.
Founded in 1907, the American Association for Cancer Research is a professional society of more than 22,000 laboratory, translational, and clinical scientists engaged in all areas of cancer research in the United States and in more than 60 other countries. AACR's mission is to accelerate the prevention and cure of cancer through research, education, communication, and advocacy. Its principal activities include the publication of five major peer-reviewed scientific journals: Cancer Research; Clinical Cancer Research; Molecular Cancer Therapeutics; Molecular Cancer Research; and Cancer Epidemiology, Biomarkers & Prevention. AACR's Annual Meetings attract more than 15,000 participants who share new and significant discoveries in the cancer field. Specialty meetings, held throughout the year, focus on the latest developments in all areas of cancer research.

American Association for Cancer Research

Related Breast Cancer Articles:

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.
Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.
Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.
More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.
Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.
Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.
Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.
Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.
Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.
Does MRI plus mammography improve detection of new breast cancer after breast conservation therapy?
A new article published by JAMA Oncology compares outcomes for combined mammography and MRI or ultrasonography screenings for new breast cancers in women who have previously undergone breast conservation surgery and radiotherapy for breast cancer initially diagnosed at 50 or younger.
More Breast Cancer News and Breast Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at