Nav: Home

New projects challenge, excite Jefferson Lab's Detector Group

June 03, 2004

Concerned family members rush a potential heart-attack sufferer to a local emergency room. There, physicians hurry to ensure the patient doesn't go into full cardiac arrest. Using a portable imager to pinpoint blood flow through the heart, a cardiologist determines within minutes that there's a small blockage in one of the major vessels. A minimally invasive procedure is performed and the vessel is cleared. Within a day or so, the patient will be resting comfortably at home.

Thanks to work being done by physicists from the Department of Energy's Jefferson Lab Detector Group that scenario, or one like it, could soon be more common. Underwritten by the U.S. Army and in collaboration with the University of Florida, the Group is beginning development of a compact heart imager that can be quickly deployed and easily moved between such hospital areas as emergency departments and intensive care units. The Group will build and test the heart imager in stages, and although the work has only recently begun, the eventual practical results could prove dramatic. "It's the most challenging project we've ever taken on," says Stan Majewski, Detector Group leader. "It will be incredibly gratifying if we're successful."

The $1.2 million, three-year heart-imager project is but one of several multiyear projects in which the Group is engaged. Two others involve application of small, portable breast imagers that make use of the positron emission mammography, or PEM, technique to detect cancerous breast lesions and help guide physicians in the taking of biopsies in hopes of identifying early-stage cancers. Another centers around gamma-ray detectors that could be used by neurologists to better monitor special radiation treatment of brain cancer. A fifth is concentrating on the development of a high-resolution gamma imager using single-photon emission-computed tomography, or SPECT, to reveal basic metabolic processes in small, unanesthetized animals.

Each of the projects is being funded in full or in part by monies provided by either the Department of Energy's Office of Biological and Environmental Research, the Army or the National Institutes of Health. Each of these imager-development efforts will continue for three to five years; as innovative technology of this kind requires time to devise, test and verify.

"If we want to have assured funding support, we have to be involved in more than one project at a time," Majewski says. "There's really no failure mode allowed. Even in the worst case we end up with improved instruments. But we have no doubts that these devices will be useful. Some are actually already useful."

Whether used to diagnose maladies in the brain, heart or breast, all of these detectors owe their genesis to the expertise of the Detector Group members, developed as spin-offs of the sensitive gear used in Jefferson Lab's experimental halls to detect subatomic particles resulting from the collision of JLab's accelerated electron beam with a target material.

The Lab's scientists have adapted similar instrument concepts to sense the presence of trace amounts of injectable solutions containing slightly radioactive isotopes known as radiopharmaceuticals. One such radiopharmaceutical is fluorine-18 deoxyglucose, or FDG. As a harmless solution containing FDG circulates throughout the body, it tends to migrate to and accumulate in malignant cells because malignancy hungers for energy in the form of sugars to grow and spread.

Once congregated in diseased tissues, the radiopharmaceuticals emit gamma rays, which are sensed by the detectors and then converted into electronic signals that can be rendered into a visible image. Depending on the kind of image processing employed, small tumors or other abnormalities usually reveal themselves as bright spots in the image.

In a series of clinical trials conducted at university hospitals and regional medical centers, the breast imagers developed by the Detector Group have proven exceptional performers, able to distinguish small tumors that otherwise would go unnoticed. Now, with one heart, one brain and two breast imagers at various stages of maturation, the Group's goal is to meet the competing requirements of practicality and cost, while retaining top-notch technical performance.

"We're getting into development of the most sophisticated instruments that we have ever built," Group leader Majewski explains. "These are complicated packages. Our challenge is to satisfy an array of specifications."

The Group has already "handed off" a market-ready version of one of its earliest detectors -- a "gamma camera" licensed to the Newport News, Va.-based Dilon Technologies. The Dilon 6800 camera has completed successful clinical trials to indicate areas of hard-to-identify breast-cancer malignancies and received FDA (Food and Drug Administration) approval. The Dilon 6800 is smaller, mobile and more sensitive than larger, traditional nuclear-medicine diagnostic equipment, with an articulating arm and movable sensing plate that can be easily applied to the breast with little discomfort.

In the future, Lab-derived detector technology will be smaller, thinner and even more mobile, with detectors able to "see" at a much higher resolution. Results should improve even further as next-generation radiopharmaceuticals hit the market, enabling enhanced visual clarity. Ultimately, says Detector Group physicist and staff scientist Drew Weisenberger, the purpose is to make devices to preserve and protect human health.

"We want to make these detectors even better," Weisenberger asserts. "Yes, we want to do the [basic] science, but we don't want to build machines that will sit on the sidelines."

DOE/Thomas Jefferson National Accelerator Facility

Related Brain Articles:

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at