Nav: Home

Protein engineered to detect nerve gas

June 03, 2004

DURHAM, N.C. -- Duke University Medical Center biochemists have used computational design to engineer and construct a protein that could sense the nerve agent soman. They said their achievement constitutes a proof-of principle that such engineered proteins can be made to detect nerve agents such as sarin and other toxic substances.

Such proteins could be incorporated into detectors, which might resemble smoke detectors and could be widely deployed as early-warning alarms, weapons monitors or in the decontamination process after an attack. The detector could not only warn of the presence of the nerve agent, but act as a continuous monitor of its levels.

Led by Associate Professor of Biochemistry Homme Hellinga, Ph.D., the researchers reported their achievement in a paper published online May 17, 2004 in the Proceedings of the National Academy of Sciences. Besides Hellinga, other co-authors of the PNAS paper were Malin Allert, Shahir Rizk and Loren Looger. Their research is sponsored by the Defense Advanced Research Projects Agency.

In the PNAS paper, Helling and his colleagues described how they had designed a protein that detects a surrogate for soman, called pinacolyl methyl phosphonic acid (PMPA), which has the same basic chemical structure as soman, but is less toxic. Soman is a nerve agent first invented by the Germans before World War II and manufactured in large quantities by the former Soviet Union.

In developing the PMPA detector, the Duke researchers used the same general design technique that they had previously used to tailor proteins to sense glucose, lactate, TNT and the brain chemical serotonin.

They began with proteins, called "periplasmic binding proteins," from the gut bacterium E. coli. These proteins are normally part of the bacterium's chemical-sensing system by which it detects nutrients. Such protein receptors detect their target molecule via an "active site" that has a precise complementary shape and binding properties that fit only that molecule, called a "ligand" -- like a key fitting a lock.

Basically, the computational design process developed in Hellinga's laboratory involves redesigning the normal protein's "lock" to fit a very different molecular key. The computational process narrows down to a manageable few the vast number of possible mutations in the normal protein and their corresponding structures, to fit a particular molecule. Once the designs are narrowed down, the biochemists construct the proteins and test them for selectivity and binding properties.

"We chose PMPA because it is a commercially available surrogate of soman and is a breakdown product of the nerve agent," said Hellinga. "The design technique we used can be readily applied to any nerve agent. Also, the design challenge is quite similar to those we faced in designing proteins to detect TNT and other compounds."

Hellinga and his colleagues designed the PMPA-detecting protein not only to highly selectively bind to PMPA, but also to signal that binding by means of an attached fluorescent molecule. Thus, the protein can be incorporated into a detector that would sense a change in fluorescence of the protein as an indicator of the presence and concentration of the nerve agent.

According to Hellinga, the specificity and affinity of the PMPA detector proteins they created are sufficient for development of first-generation detectors. However, the protein must still be made more robust to function stably over long periods of time. Thus, the researchers are experimenting with corresponding proteins from thermophilic bacteria -- known for the robustness of their proteins -- that live in hot springs. The biochemists are also launching efforts to design proteins to detect other nerve agents, including sarin.

"One particularly important aspect of this computational design technique is that it can be done very rapidly," said Hellinga. "It takes at most a day to calculate a set of candidate structures and perhaps a week to construct them. So, in the event of the deployment of a new chemical threat, it might take in principle only weeks to develop a sensor system for it. We're now working to develop an automated laboratory process into a system to fabricate such proteins."

The researchers are working with Nomadics, Inc. of Stillwater, Okla. To develop sensors based on their advances, and they plan further commercialization of the design and synthesis technologies.
-end-


Duke University Medical Center

Related Proteins Articles:

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.
Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
Finding the proteins that unpack DNA
A new method allows researchers to systematically identify specialized proteins called 'nuclesome displacing factors' that unpack DNA inside the nucleus of a cell, making the usually dense DNA more accessible for gene expression and other functions.
A brewer's tale of proteins and beer
The transformation of barley grains into beer is an old story, typically starring water, yeast and hops.
New tool for the crystallization of proteins
ETH researchers have developed a new method of crystallizing large membrane proteins in order to determine their structure.
New interaction mechanism of proteins discovered
UZH researchers have discovered a previously unknown way in which proteins interact with one another and cells organize themselves.
When proteins shake hands
Protein nanofibres often have outstanding properties such as a high stability, biodegradability, or antibacterial effect.
Proteins' fluorescence a little less mysterious
Rice University scientists use simulations to understand the mechanism behind a popular fluorescent protein used to monitor signals between neurons.
New study suggests health benefits of swapping animal proteins for plant proteins
Substituting one to two servings of animal proteins with plant proteins every day could lead to a small reduction in the three main cholesterol markers for cardiovascular disease prevention, a new study suggests.
More Proteins News and Proteins Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.