A 'swarm' of satellites for a unique look inside the Earth

June 03, 2004

ESA's Earth Observation Programme Board has just decided which of the six Earth Explorer candidate missions, presented earlier in April at the User Consultation Meeting, will be developed and launched. Swarm, an Earth Explorer Opportunity Mission, is a constellation of satellites which will study the Earth's magnetic field.

A further selection between the Earth Explorer Core Missions EarthCARE (Earth Clouds Aerosols and Radiation Explorer) and SPECTRA (Surface Processes and Ecosystem Changes Through Response Analysis) has been deferred to November 2004 allowing clarifications to be made for both missions. It was recommended that the EGPM (European contribution to Global Precipitation Measurement) mission should be furthered within the ESA Earth Watch framework.

Based upon the recommendations made by the Earth Science Advisory Committee and the ESA Director of Earth Observation, the choice of Swarm for full implementation was unanimously agreed upon as a result of its scientific excellence. ESA has successfully moved to the next round of missions that explore our environment and the Earth as a system. Together with the decision expected in November for an additional Core Explorer, ESA is at a point where the next generation of scientific missions can be initiated. In this context the Agency is planning a Call for Mission Proposals in September 2004.

The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution, in order to gain new insights into the Earth system by improving our understanding of the Earth's interior and climate. The mission is scheduled for launch in 2009. After release from a single launcher, a side-by-side flying lower pair of satellites at an initial altitude of 450 km and a single higher satellite at 530 km will form the Swarm constellation.

High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the necessary observations that are required to separate and model various sources of the geomagnetic field. This results in a unique "view" inside the Earth from space to study the composition and processes in the interior. It also allows the analysis of the Sun's influence within the Earth system. In addition, practical applications in many different areas, such as space weather, radiation hazards, navigation and resource exploration, benefit from the Swarm concept.
-end-
For further information, please contact :

ESA Media Relations Division Tel: 33-1-53-69-7155 Fax: 33-1-53-69-7690

Roger Haagmans Principle Scientist Solid Earth Science and Applications Department Earth Observation Programmes Directorate Tel: 31-71-565-3506 Fax : 31-71-565-5675 e-mail roger.haagmans@esa.int

European Space Agency

Related Magnetic Field Articles from Brightsurf:

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.

Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.

How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Read More: Magnetic Field News and Magnetic Field Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.